

POWERED BY COR2ED

MEETING SUMMARY ESMO 2019, Barcelona, Spain

Dr. Angela Lamarca

Department of Medical Oncology The Christie NHS Foundation Trust / University of Manchester, United Kingdom

NEUROENDOCRINE TUMOUR UPDATE

Please note: The views expressed within this presentation are the personal opinion of the author. They do not necessarily represent the views of the author's academic institution or the rest of the NET CONNECT group.

This content is supported by an Independent Educational Grant from Ipsen.

TOP 3 HIGH-IMPACT NEUROENDOCRINE TUMOUR PRESENTATIONS AT ESMO 2019

SANET-ep: A PHASE 3 STUDY OF SURUFATINIB IN PATIENTS WITH WELL-DIFFERENTIATED ADVANCED EXTRA-PANCREATIC NETs

Xu, et al. ESMO 2019 Abstract #LBA76

BACKGROUND

- surufatinib is an anti-angiogenic tyrosine kinase inhibitor that selectively inhibits VEGFR, FGFR and CSF-1R
- Anti-VEGF signaling pathway is a proven strategy for treatment of pancreatic NETs but its effect in extra-pancreatic NETs has yet to be proven
- SANET-ep investigates the effect of surufatinib in patients with advanced, well differentiated extra-pancreatic NETs

CSF-1R, colony stimulating factor-1 receptor; FGFR, fibroblast growth factor receptor; NET, neuroendocrine tumour; VEGF(R), vascular endothelial growth factor (receptor)

^{1.} Raymond E, et al. N Engl J Med 2011;364:501–13; 2. Xu J, et al. Presented at ESMO 2019. Abstract #LBA76

198 patients randomised at time of interim analysis PD Surufatinib Survival **Primary Endpoint:** Stratification factors: 300 mq QD follow up Investigator-assessed PFS Treated or naïve R **Secondary Endpoints:** Pathological grade 1 or 2 2:1 PD ORR, DCR, DoR, TTR, OS Open-label • Tumour origins A, B or C Placebo Safety and tolerability surufatinib ٠

Tumour origin: A, jejunum; ileum, duodenum, thymus, cecum; B: lung, stomach, liver, appendix, colon, rectum; C: other or unknown.

• Study was terminated due to superiority following a pre-planned interim analysis at 127 PFS events

DCR, disease control rate; DoR, duration of response; NET, neuroendocrine tumours; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; TTR, time to tumour response

Xu J, et al. Presented at ESMO 2019. Abstract #LBA76

PROGRESSIVE ADVANCED EXTRA-PANCREATIC NET PATIENTS

7

POWERED BY COR2ED

SANET-ep PRIMARY ENDPOINT RESULTS PROGRESSION FREE SURVIVAL (INVESTIGATOR ASSESSED)

• PFS 9.2 months (surufatinib) vs 3.8 months (placebo)

CI, confidence interval; HR, hazard ratio; PFS, progression free survival Xu J, et al. Presented at ESMO 2019. Abstract #LBA76

• Benefit was observed across all subgroups

	Surufatinib N (Events)	Placebo N (Events)	In favour of surufatinib		Surufatinih	Placebo	In favour of surufatinib	
Subgroup			HR (95% CI)	Subgroup	N (Events)	N (Events)	HR (95% CI)	
Overall Subjects				No. of organs involved by tumour				
Stratified	129 (77)	69 (51)	⊢●1	≤2	43 (25)	25 (19)	⊢●−−−−↓	
Unstratified	129 (77)	69 (51)	⊢● →↓ İ	≥3	86 (52)	44 (32)		
NET pathological grade				Liver metastasis	00(02)	(52)		
Grade 1	21 (12)	12 (8)		Voc	97 (59)	53 (12)		
Grade 2	108 (65)	57 (43)	⊢●──┤	Tes Na	77 (J7) 72 (10)	1 ((0)		
Previous systemic treatment			İ	NO D. L. CCA I I I I I I I I I I I I I I I I I I	52 (18)	16 (9)		
Yes	87 (50)	45 (33)	⊢● ── 	Prior SSA treatment				
No	42 (27)	24 (18)		Yes	44 (25)	19 (17)	⊢ ● i	
Primary lesion of tumour				No	85 (52)	50 (34)	⊢●−−1	
A+C	57 (32)	31 (20)		Prior systemic chemotherapy				
В	72 (45)	38 (31)	⊢●1	Yes	52 (29)	27 (19)	⊢●	
Age			i	No	77 (48)	47 (37)		
<65 years	115 (69)	56 (42)	⊢●1	Disassa disanasis to randomisation	// (10)	12 (32)		
≥65 years	14 (8)	13 (9)	⊢İ		04/53)	45 (77)		
Gender		. ,		≈24 months	84 (52)	45 (55)	H	
Male	73 (44)	35 (25)	⊢ ●−−−1 İ	>24 months	45 (25)	24 (18)	⊢–●––-¦i	
Female	56 (33)	34 (26)	⊢ ●−−−1 !	Latest progression to randomisation				
Primary tumour site	()	(<i>'</i>		≤3 months	114 (67)	58 (44)	⊢●1	
Gastrointestinal	61 (36)	32 (30)	⊢ ●−−−↓ ↓	>3 months	15 (10)	11 (7)	⊢	
Others	68 (41)	37 (21)		Baseline CoA	()	()		
ECOG performance status	× /	× /		>7 111 N	43 (28)	22 (13)		
0	72 (47)	46 (37)			71 (20)	ZZ (IJ) ZZ (JQ)		
1	57 (30)	23 (14)		SZ ULIN	1 (20)	JO (27)		
	- ()	- ()						
			0.0 0.5 1.0 2	2.0			0.0 0.5 1.0	

Tumour origin: A, jejunum; ileum, duodenum, thymus, cecum; B: lung, stomach, liver, appendix, colon, rectum; C: others or unknown origin.

CgA, chromogranin A; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; NET, neuroendocrine tumour; PFS, progression free survival; SSA, somatostatin analogues; ULN, upper limit of normal

Xu J, et al. Presented at ESMO 2019. Abstract #LBA76

SANET-ep SECONDARY ENDPOINTS

10

ORR, DCR, TTR, DoR RESULTS

• OS was immature (18.7% events)

*11 PR confirmed, 2 PR unconfirmed

CI, confidence interval; DCR, disease control rate; DoR, duration of response; HR, hazard ratio; iITT, interim intent-to-treat; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression free survival; PR, partial response; SD, stable disease; TTR, time to tumour response Xu J, et al. Presented at ESMO 2019. Abstract #LBA76

SANET-ep SAFETY ANALYSIS

MOST COMMON TEAEs WITH FREQUENCY ≥ 20%

TEAEs	Surufatini n (b (N=129) %)	Placebo (N=68) n (%)		
	Any grade	≥ grade 3	Any grade	≥ grade 3	
Proteinuria	91 (70.5)	25 (19.4)	36 (52.9)	0	
Hypertension	83 (64.3)	47 (36.4)	18 (26.5)	9 (13.2)	
Diarrhea	60 (46.5)	2 (1.6)	14 (20.6)	0	
Blood thyroid stimulating hormone increased	51 (39.5)	0	5 (7.4)	0	
Blood bilirubin increased	50 (38.8)	3 (2.3)	12 (17.6)	0	
Aspartate aminotransferase increased	47 (36.4)	5 (3.9)	17 (25.0)	2 (2.9)	
Fecal occult blood positive	46 (35.7)	0	12 (17.6)	0	
Hypertriglyceridemia	41 (31.8)	3 (2.3)	6 (8.8)	0	
Hypoalbuminemia	37 (28.7)	0	4 (5.9)	0	
Alanine aminotransferase increased	32 (24.8)	4 (3.1)	19 (27.9)	0	
Abdominal pain upper	29 (22.5)	1 (0.8)	9 (13.2)	0	
Anemia	27 (20.9)	9 (7.0)	11 (16.2)	2 (2.9)	

• Surufatinib was generally well tolerated. However, 36.4% of the patients treated with surufatinib experienced ≥ grade 3 toxicity of hypertension

- Surufatinib significantly improved PFS in patients with advanced extra-pancreatic NETs¹
- One limitation of the SANET-ep study is that it was conducted in an Asian population only
- A poster presentation at ESMO 2019 reported on the safety profile of surufatinib in solid tumours in a western population²
 - The safety profile in the western population was shown to be similar to that reported in the Asian population
- Further data is required in a western population before implementing in clinical practice
- However, this is a step forward in delivering new options for patients with NETs

NET, neuroendocrine tumours

1. Xu J, et al. Presented at ESMO 2019. Abstract #LBA76 ; 2. Hamilton E, et al. Presented at ESMO 2019. Abstract #1393P

NETTER-1 (POST HOC ANALYSIS): RELATION BETWEEN OBJECTIVE TUMOUR SHRINKAGE AND PFS

Pavel, et al. ESMO 2019 Abstract #1382PD

PFS, progression free survival

BACKGROUND

- NETTER-1 investigated the effect of ¹⁷⁷Lu-DOTATATE plus octreotide in patients with progressive midgut NETs¹
- The NETTER-1 trial was instrumental in PRRT now being part of the treatment pathway for patients with NET
- Treatment efficacy has often been associated with early reduction of tumour size
- This post-hoc analysis of NETTER-1 examined whether achieving objective tumour shrinkage predicts duration of PFS

Lu, lutetium; NET, neuroendocrine tumour; PFS, progression free survival; PRRT, peptide receptor radionuclide therapy 1. Strosberg J. NEJM 2017; 376:125-35; 2. Pavel M. ESMO 2019 Abstract #1382PD

NETTER-1 PHASE III TRIAL

MAIN STUDY DESIGN

Aim	Evaluate the efficacy and safety of ¹⁷⁷ Lu-Dotatate plus octreotide 30 mg compared to octreotide LAR 60mg (off-label use) in patients with inoperable, somatostatin receptor positive, midgut NET, progressive under octreotide LAR 30mg (label use)							
Design	International, multicenter, randomized, comparator-controlled, parallel-group							
T I Pr	Treatment and Assessments Progression free survival (RECIST criteria) every 12 weeks Dose 1 Dose 2 Dose 3 Dose 4							
Baseline and	n=116	4 administrations of 7.4 GBq of 177Lu-Dotatate every 8 weeks + octreotide LAR 30 mg 5 Years follow						
Randomization	n=113	Octreotide LAR 60mg every 4 weeks						

 Primary post hoc analysis for tumour shrinkage was based on the time interval between baseline and 150 days from baseline and conducted on the full analysis set of 229 patients

GBq, gigabecquerels; LAR, long acting release; Lu, lutetium; RECIST, response evaluation criteria in solid tumors Strosberg J. NEJM 2017;376:125-35

NETTER-1 (POST-HOC ANALYSIS)

PFS IN RELATION TO TUMOUR RESPONSE IN THE ¹⁷⁷Lu-DOTATATE GROUP

NETTER-1 (POST-HOC ANALYSIS)

¹⁷⁷LU-DOTATATE PROLONGED PFS EVEN IN ABSENCE OF DETECTABLE TUMOUR RESPONSE

CI, confidence interval; HR, hazard ratio; PFS, progression free survival Pavel M. ESMO 2019 Abstract #1382PD

- All patients benefitted from treatment with PRRT regardless of tumour shrinkage
 - Benefit of 4 cycles of PRRT treatment should not only be assessed by tumour shrinkage

HEPAR PLUS: A PHASE 2 OPEN LABEL STUDY OF ¹⁷⁷LU-DOTATATE PLUS ¹⁶⁶HO-RADIOEMBOLISM IN PATIENTS WITH NETS

Braat, et al. ESMO 2019 Abstract #13800

BACKGROUND

- At diagnosis 21% of the patients with a grade 1 NET and 30% with a grade 2 NET have distant metastases¹
- The liver is the most commonly affected organ in metastatic disease and is the most incriminating factor for patient survival¹
- Treatment with peptide receptor radionuclide therapy (PRRT) shows a high objective response rate and long median survival after treatment However, complete remission is almost never achieved^{1,2}
- Additional treatment of liver disease after PRRT may improve outcome in NET patients²
 - Radioembolization is an established therapy for liver metastasis

NET, neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy 1. Braat A, et al. BMC Gastroenterology 2018;18:84; Braat A, et al. ECIO 2019 Abstract #1902.3

HEPAR PLUS STUDY DESIGN

- Non-randomised, single arm, phase 2 study
 - 34 patients included
 - 31 patients treated
 - 30 patients evaluable

- Primary objectives: objective response rate (RECIST 1.1) 3 months after ¹⁶⁶Ho-RE
- Secondary endpoints: toxicity profile, biochemical response, QoL, biodistribution and dosimetry

QoL, quality of life; RE, radioembolization Braat A, et al. BMC Gastroenterology 2018;18:84; Braat A, et al. Presented at ESMO 2019 Abstract #13800

HEPAR PLUS STUDY

OBJECTIVE TUMOUR RESPONSE

• An objective response rate of 40% was achieved

RECIST 1.1	Treatment volume			Non-treatment liver volume	Extrahepatic disease	Patient-based
	#1	#2	Mean			
Complete response	0%	0%	0%	0%	0%	40%
Partial response	40%	43%	43%	0%	0%	40%
Stable disease	60%	57%	57%	30%	63%	47%
Progressive disease	0%	0%	0%	7%	13%	13%
Not applicable				63%	24%	

mRECIST		Additional CR/PR after PRRT				
Complete response	10%	10%	10%	0%		
Partial response	47%	43%	50%	0%		
Stable disease	30%	30%	27%	20%		
Progressive disease	0%	0%	0%	0%		
Not applicable	13%	17%	13%	80%		

CR, complete response; mRECIST, modified response evaluation criteria in solid tumors; PR, partial response; PRRT, peptide receptor radionuclide therapy Braat A, et al. Presented at ESMO 2019 Abstract #13800

HEPAR PLUS STUDY

CLINICAL TOXICITY

	CTCAE v4.03 grade					
Related toxicity	0	1	2	3	4	
Hepatic failure	30				1	
Abdominal pain	8	9	11	3		
Fatigue	12	10	8	1		
Nausea	11	12	7	1		
Back pain	22	7	2			
Vomiting	18	7	6			
Malaise	24	6	1			
(sub) febrile	27	3	1			
Weight loss	29	2				

	CTCAE v4.03 grade				
Unrelated toxicity	0	1	2	3	4
Constipation	27	3	1		
Insomnia	30		1		
Urinary retention	30		1		
Coughing	30		1		
Pruritis	30		1		
Sweating	28	3			
Shivering	29	2			
Diarrhea	29	2			
Oedema	29	1			
Joint pain	30	1			
Headache	30	1			
Cramps	30	1			

- Toxicity profile comparable to literature
- QoL temporarily decreased but fully recovered at 3 months

- **HEPAR PLUS is the first trial in this setting** and suggests that radioembolization after treatment with PRRT may benefit patients with NETs
- Promising results seen from HEPAR PLUS but must be confirmed in a randomised phase 3 trial

REACH NET CONNECT VIA TWITTER, LINKEDIN, VIMEO AND EMAIL OR VISIT THE GROUP'S WEBSITE http://www.net-connect.info

Follow us on Twitter <u>@net_connectinfo</u> Join the <u>NET CONNECT</u> group on LinkedIn

Watch us on the Vimeo Channel **NET CONNECT**

Email antoine.lacombe@ cor2ed.com

NET CONNECT Bodenackerstrasse 17 4103 Bottmingen SWITZERLAND

Dr. Antoine Lacombe Pharm D, MBA Phone: +41 79 529 42 79 antoine.lacombe@cor2ed.com

Dr. Froukje Sosef MD Phone: +31 6 2324 3636 <u>froukje.sosef@cor2ed.com</u>

