

POWERED BY COR2ED

CONGENITAL HYPOPITUITARISM: NOVEL PHENOTYPES, NOVEL MECHANISMS

Mehul Dattani

UCL GOS Institute of Child Health London/ Great Ormond Street Children's Hospital, London

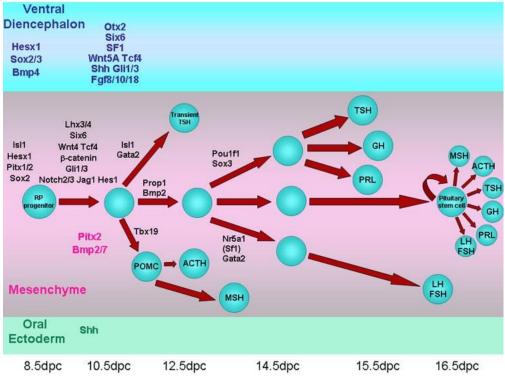
DISCLOSURES

• Grants/Honoraria from NovoNordisk and Sandoz

CONGENITAL HYPOPITUITARISM (CH)

- Incidence 1 in 4,000 1 in 10,000 births
- Early neonatal presentation e.g. low blood glucose or later with growth failure
- May be single e.g. GHD or multiple (MPHD/CPHD)
- Can evolve to include other hormonal deficiencies
- Associated abnormalities of eyes, ears, other parts of forebrain, palate

SEPTO-OPTIC DYSPLASIA DEFINITION


- Described by Reeves in 1941 absence of septum pellucidum associated with optic nerve problems
- Variable combination of midline forebrain abnormalities, eye abnormalities and pituitary abnormalities^{1,2}
 - 2/3 features to make the diagnosis
- Rare: reported incidence 1/10,000
- Commoner in younger mothers: controversial
- Mean age of mothers³
 - SOD: 25.1 years (n=113)
 - CPHD: 29 years (n=117)

CPHD, combined pituitary hormone deficiency; SOD, septo-optic dysplasia

1. Patel L, et al. J Pediatr. 2006;148:85-8. 2. Webb EA, et al. Eur J Hum Genet 2010;18:393-7. 3. McNay DE, et al. J Clin Endocrinol Metab. 2007;92:691-7

GENETIC CASCADE IN PITUITARY DEVELOPMENT

- Signaling molecules
 - E.g. FGF, BMP4, Wnt, Notch, Shh
 - Widely expressed
- Transcription factors
 - Homeobox genes,
 HMG family, TBX family
 - Regulate gene expression; activators and repressors

BMP4, bone morphogenetic protein 4; FGF, fibroblast growth factor; HMG, high mobility group; SHH, sonic hedgehog; TBX, T-box transcription factor; WNT, wingless-type MMTV integration site family

Kelberman D, et al. Endocr Rev. 2009;30:790-829

STRATEGIES FOR GENE IDENTIFICATION

Candidate gene approach

- Mouse models
 - Naturally-occurring
 - Transgenic
- Chromosomal abnormalities
- Genome Mapping Strategies
 - Linkage analysis
 - Comparative Genomic
 Hybridization
 - SNP arrays

Next generation sequencing

- Whole exome sequencing
- Whole genome sequencing

GENES CURRENTLY IMPLICATED IN CONGENITAL HYPOPITUITARISM

Early genes

- SOX family: SOX2, SOX3
- HESX1
- *OTX2*
- LIM family: LHX3, LHX4
- GLI2
- TCF3/TCF7L1
- KS genes
- FOXA2
- ARNT2
- IGSF1
- PNPLA6

Genes implicated in cellular differentiation • PROP1 • POU1F1 • KCNQ1

Genes leading to IGHD

- GHRHR
- GH1
- RNPC3

IGHD, isolated growth hormone deficiency; KS, Kallmann syndrome Adapted from Gregory LC, Dattani MT. J Clin Endocrinol Metab. Epub Nov 8, 2019

BACKGROUND

Congenital hypopituitarism disorder	Incidence	Description	Known candidate genes
Multiple pituitary hormone deficiency (MPHD) without midline defects	1/4000	Deficiencies in one or more of the 6 anterior pituitary hormones: GH, TSH, LH, FSH, PRL, ACTH	HESX1, SOX3, GLI2, LHX3, LHX4, PROP1, POU1F1, KAL1, PROKR2, PNPLA6
Septo-optic dysplasia (SOD)	1/10,000	Optic nerve hypoplasia (ONH), Midline neuroradiological abnormalities. Pituitary hypoplasia - consequent endocrine deficits	SOX2, OTX2 HESX1 PROKR2, FGF8 KAL1 TCF7L1
Holoprosencephaly	1/10,000 - 1/20,000	Incomplete cleavage of the prosencephalon, affecting both the forebrain and the face: Alobar (no forebrain division) Semilobar (some separation) Lobar (complete separation) Microcephaly, hypotelorism, a single central maxillary incisor, cleft lip and/or palate	SHH GLI2 ZIC2 SIX3 TGIF1 FGF8 etc. Sub-microscopic deletions at a number of loci

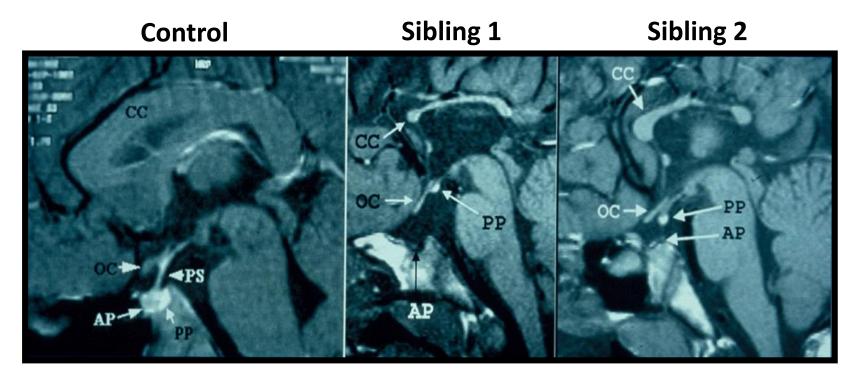
ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; GH, growth hormone; LH, luteinizing hormone; MPHD, multiple pituitary hormone deficiency; ONH, optic nerve hypoplasia; PRL, prolactin; SOD, septo-optic dysplasia; TSH, thyroid-stimulating hormone Adapted from Gregory LC, Dattani MT. J Clin Endocrinol Metab. Epub Nov 8, 2019. Fang Q, et al. Endocr Rev. 2016;37:636-75

BACKGROUND

Congenital hypopituitarism disorder	Incidence	Description	Known candidate genes
Hypogonadotropic hypogonadism (HH)/ Kallmann syndrome (KS)	Males: 1/10,000 Females: 1/50,000	Failure to activate pulsatile secretion of GnRH, causing deficiencies in LH, FSH. Delay in onset/complete/partial failure of puberty Anosmia	GnRHR KAL1 PROK2 PROKR2 FGF8 FGFR1 etc
Isolated pituitary hormone deficiency (IGHD)	1/4,000 - 1/10,000	The most common isolated deficiency - short stature, delayed growth velocity and skeletal maturation	GH1, GHRHR, RNPC3 HESX1, OTX2 SOX3 POU1F1
Isolated TSH deficiency	1/20,000 - 1/80,000	-	TSHϐ, TRHR, TBL1X, IGSF1
Isolated ACTH deficiency		Neonatal hypoglycaemia	TBX19 (TPIT), POMC

ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; HH, hypogonadotropic hypogonadism; IGHD, isolated growth hormone deficiency; KS, Kallmann syndrome; LH, luteinizing hormone; TSH, thyroid-stimulating hormone Adapted from Gregory LC, Dattani MT. J Clin Endocrinol Metab. Epub Nov 8, 2019

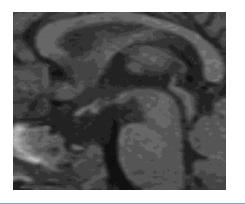
HESX1: A TRANSCRIPTIONAL REPRESSOR


- Homeodomain transcriptional repressor expressed in early embryo (E6.5 in mouse) in region fated to form forebrain and pituitary
- Localised Rathke's pouch E9.5 days; no expression after E13.5
- Knock-out mice
 - Highly variable phenotype similar to septo-optic dysplasia in man
 - Anopthalmia/micropthalmia, pituitary dysgenesis, midline brain defects, olfactory bulb hypoplasia
- Human mutations associated with recessive/dominant SOD, CPHD and IGHD
 - Rare
 - Variably penetrant

Dattani MT, et al. Nat Genet. 1998;19:125-33

E, embryonic day; CPHD, combined pituitary hormone deficiency; HESX1, HESX homeobox 1; IGHD, isolated growth hormone deficiency; SOD, septo-optic dysplasia

MRI APPEARANCES IN SOD ASSOCIATED WITH *HESX1* MUTATIONS

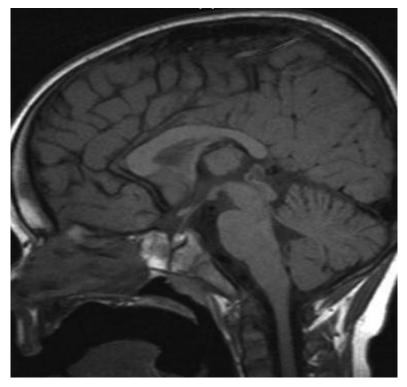

AP, anterior pituitary; CC, corpus callosum; HESX1, HESX homeobox 1; MRI, magnetic resonance imaging; OC, optic chiasm; PP, posterior pituitary; PS, pituitary stalk; SOD, septo-optic dysplasia

SOX3 MUTATIONS

- Located Xq26-27
- 446aa HMG transcription factor with 4 PA repeats
- Mutant mice: abnormal hypothalamus and pituitary
- Genetic duplications associated with hypopituitarism
- Loss of function mutations also associated with hypopituitarism

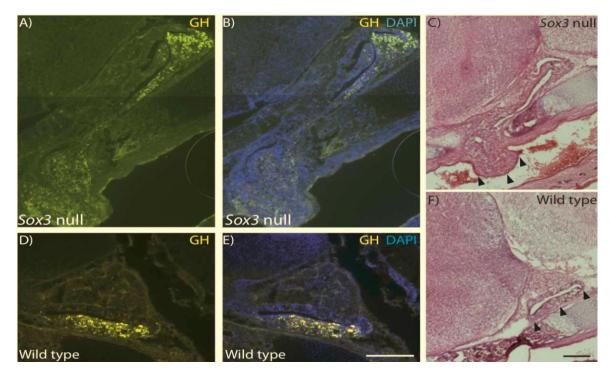
Sibling 1

Sibling 2


aa, amino acid; HMG, high-mobility group; PA, polyalanine; SOX3, sex-determining region Y box 3

1. Kelberman D, et al. Endocr Rev. 2009;30:790-829. 2. Woods KS, et al. Am J Hum Genet. 2005;76:833-49

SOX3 DELETION


- Male patient with Haemophilia B, GH and gonadotrophin deficiencies; borderline low FT4
- De novo 2.31Mb deletion of Xq27.1-q27.2 incorporating SOX3 and F9 encoding Factor IX

FT4, free T4; GH, growth hormone; SOX3, sex-determining region Y box 3 Alatzoglou KS, et al. J Clin Endocrinol Metab. 2014;99:E2702-8

SOX3 NULL MICE SHOW PERSISTENT CRANIOPHARYNGEAL CANAL AT P1

OTX2 AND HYPOPITUITARISM

- Expressed early in murine development; important for forebrain/hypothalamic development – HESX1 expression
- Mutations identified in patients with CPHD/IGHD:
 - Eye defects retinal dystrophy, anophthalmia/microphthalmia
 - Cerebellar abnormalities
 - Variable hypopituitarism
 - APH, EPP (variable)

LHX3/LHX4 MUTATIONS


Gene affected	Inheritance	Phenotype
LHX3	Recessive (deletion, missense)	GH, TSH, PRL, LH, FSH deficiencies APH Eutopic PP Variable short stiff neck Enlarged pituitary (n=2)
LHX4	Dominant (splice site) Recessive in mouse	GH, TSH, cortisol, Gn deficiencies APH Pituitary cysts EPP Abnormal cerebellar tonsils

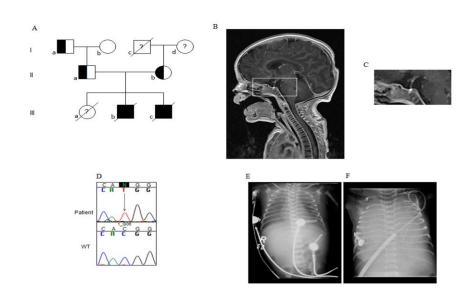
APH, anterior pituitary hypoplasia; EPP, ectopic posterior pituitary; FSH, follicle-stimulating hormone; GH, growth hormone; Gn, gonadotropin; LH, luteinizing hormone; PP, posterior pituitary; PRL, prolactin; LHX, LIM homeobox; TSH, thyroid-stimulating hormone

1. Netchine I, et al. Nat Genet. 2000;25:182-6. 2. Bhangoo AP, et al. J Clin Endocrinol Metab. 2006;91:747-53. 3. Machinis K, et al. Am J Hum Genet. 2001;69:961-8

NOVEL CH PHENOTYPE

- 3 siblings with panhypopituitarism
- Sensorineural hearing loss
- Skeletal defects
- Skin defects
- LHX3 deletion LHX3 expressed in pituitary, inner ear and spinal cord

NOVEL INSIGHTS INTO LHX4 MUTATIONS


- In humans, heterozygous mutations in *LHX4* are associated with combined pituitary hormone deficiency
 - Mice with heterozygous mutations are normal
- Mice homozygous for *LHX4* mutations die shortly after birth with immature lungs that do not inflate
- *LHX4* null mice exhibit incomplete pituitary gland development

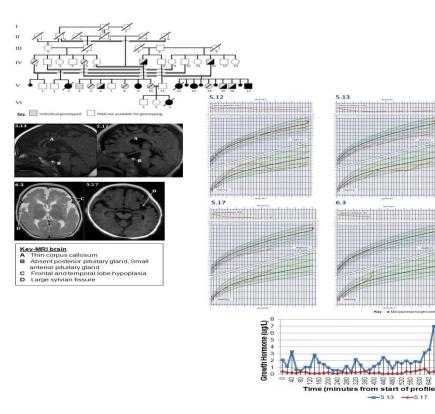
1. Sheng HZ, et al Trends Genet. 1999;15:236-40. 2. Machinis K, et al. Am J Hum Genet. 2001;69:961-8

NOVEL INSIGHTS INTO LHX4 MUTATIONS

- Two deceased male Pakistani patients born to non-consanguineous parents
- Homozygous LHX4 c.377C>T, p.T126M located LIM2 domain, highly conserved
- Both had panhypopituitarism, SGA, mid-facial hypoplasia, microphallus with poorly developed scrotum
- Further daughter with a depressed nasal bridge and cleft palate (DNA not available)
- Rapid commencement of hydrocortisone and thyroxine in the 2 boys; all three children died within the first week of life

SHH, GLI2, HOLOPROSENCEPHALY AND HYPOPITUITARISM

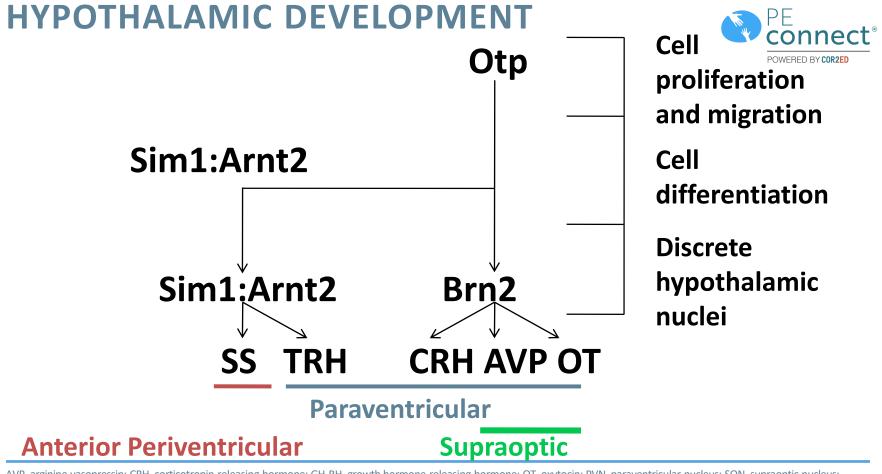
- *Gli2* mediates actions of Sonic Hedgehog
- Heterozygous variably penetrant mutations associated with holoprosencephaly, abnormal pituitary function and craniofacial defects
- Hypopituitarism without midline defects
- Post-axial polydactyly, single central incisor and partial agenesis of CC associated


NEXT GENERATION SEQUENCING

CONGENITAL HYPOPITUITARISM (CH): A NOVEL SYNDROME

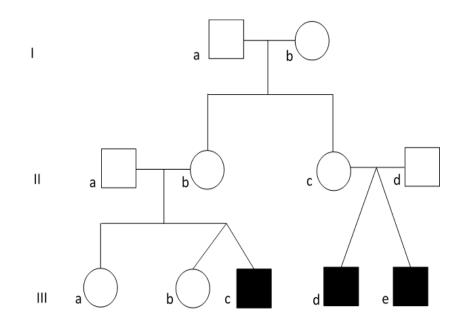
- Middle-Eastern pedigree
- 6 children born to 3 pairs of first cousin parents
- Early onset DI, ACTH and TSH deficiencies
- Dysmorphic, blind
- Initial cerebral sparing with progressive microcephaly, intractable tonic/clonic seizures, cerebral palsy and global developmental delay
- Congenital dislocation of the hips
- Hydronephrosis, vesico-ureteric reflux and nephrogenic bladder present in all affected
- 3 died of sepsis

MOLECULAR ANALYSIS


- Homozygosity mapping followed by exome sequencing
- Variant in *ARNT2* on chromosome 15 identified
 - Homozygous c.1373_1374dupTC
 - Recessive, parents and unaffected siblings heterozygous or homozygous for the normal allele
 - Frameshift with premature stop
 52 amino acids later
 - Nonsense-mediated decay

- Aryl hydrocarbon nuclear translocator 2
- Transcriptional regulator, member of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) protein family important for hypothalamic development
- Binds to DNA as a heterodimer with Aryl hydrocarbon receptor (AhR), Hypoxia-inducible factor 1α (Hif- 1α) and Sim1
- Expressed widely
 - foetal brain including olfactory bulb, basal ganglia, rhinencephalon, midbrain, thalamus, hypothalamus
 - kidney, muscular layer of the urinary bladder, cochlea, inner layer retina
- Murine knockout:
 - Hypocellular/absent paraventricular, supraoptic and anterior periventricular nuclei
 - Absent/hypoplastic posterior pituitary glands, thin median eminence
 - Deficiencies in oxytocin, vasopressin, CRH, TRH and somatostatin
 - SIM1 and ARNT2 mutant mice die within the 1st week of life

AhR, aryl hydrocarbon receptor; ARNT2, aryl hydrocarbon receptor nuclear translocator 2; bHLH-PAS, basic helix-loop-helix-PER-ARNT-SIM; CRH, corticotropin-releasing hormone; Hif-1 α , hypoxia-inducible factor 1 α ; SIM1, single-minded homolog 1; TRH, thyrotropin releasing hormone Webb EA, et al. Brain. 2013;136(Pt 10):3096-105



AVP, arginine vasopressin; CRH, corticotropin-releasing hormone; GH-RH, growth hormone-releasing hormone; OT, oxytocin; PVN, paraventricular nucleus; SON, supraoptic nucleus; SS, somatostatin; TRH, thyrotropin-releasing hormone

1. Webb EA, et al. Brain. 2013;136(Pt 10):3096-105. 2. Takahashi K, et al. Hypothalamus and Neurohypophysis. 2010. In: Lloyd R. (eds) Endocrine Pathology:. Springer, New York, NY

X-LINKED HYPOPITUITARISM WITH GLUCOSE DYSREGULATION

- Non-consanguineous Caucasian pedigree with three affected males
- Central hypothyroidism
- GHD
- Unique pancreatic phenotype: fluctuation between hyperinsulinaemic hypoglycaemia and hyperglycaemia
- Small anterior pituitary on MRI
- Micropenis
- Mild learning difficulties

ENDOCRINE PHENOTYPE

Patient	Age at presentation years	Height at presentation cm (SDS)	Most recent height SDS (age in years)	HC SDS (age in years)	Peak GH to provocation ug/L	IGF1 ng/ml (NR)	IGFBP3 mg/L (NR)	Most recent cortisol nmol/L	FT4 (pre- treatment) pmol/L (NR)	TSH (pre- treatment) mU/L	Puberty
IIIc	1.13	58.8 (-6.7)	-0.30 (8.8)	-2.2 (7.5)	<0.1 on profile	<25	<0.5	315	12.6 (12 - 22) Not treated	5	N/A
IIId	2.2	71.5 (-4.4)	-2.07 (14.1)	-1.06 (13.1)	1.1	9 (20 - 158)	0.67 (1.2 - 3.7)	183	11.4 (12 - 22)	2.9	G4, TV 12, 25 mls
Ille	2.2	69.5 (-5.2)	-2.05 (14.1)	-1.38 (13.1)	0.7	10 (20 - 158)	1.2 (1.2 - 3.7)	241	11.3 (12 - 22)	3.4	G4, TV 25, 20 mls

Mid-parental height -0.34 SDS

FT4, free T4; G, genitalia; GH, growth hormone; HC, head circumference; IGF1, insulin-like growth factor-1; IGFBP3, insulin-like growth factor-binding protein 3; NR, normal range; HCG, human chorionic gonadotrophin; SDS, standard deviation score; TSH, thyroid-stimulating hormone; TV, testicular volume Gregory LC, et al. EBioMedicine. 2019;42:470-80

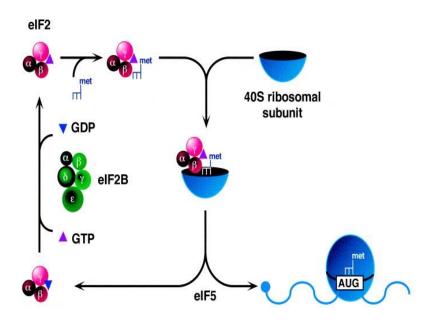
GLUCOSE DYSREGULATION

Patient	Glucose mmol/L (age in years)	Insulin mU/L (age in years)	Diazoxide treatment (age in years)	HbA1c in mmol/mol (NR 20-40)	Peak 2 hr glucose on OGTT in mmol/L (age in years)	Peak 2 hr insulin (mU/L)
IIIc	3.3 (0.25)	5.9 (0.25)	0.75 - 6.8		4.3 (8.9); BG 2.9 at 3 hours	8.6 at 3 hours when hypoglycaemic
IIId	3.4 (2.2)	6.8 (2.2)	2.5 - 6.7	47	13 (13.6) 2.7 5 hours post- glucose load	33.2 10.9 at time of hypoglycaemia
Ille	3.2 (2.2)	4.9 (2.2)	2.5 - 6.7	43	13.5 (13.6) 2.9 (fasting)	30.5 2.5 (fasting at time of hypoglycaemia)

BG, blood glucose; HbA1c, haemoglobin A1c; NR, normal range; OGTT, oral glucose tolerance test Gregory LC, et al. EBioMedicine. 2019;42:470-80

MOLECULAR DIAGNOSIS

Exome sequencing of the X chromosome revealed a novel variant in the *EIF2S3* gene <u>*EIF2S3*</u>: ChrX_24091319 C/T, <u>*c.1294C*>T, p.P432S</u>


EIF, eukaryotic translation initiation factor; EIF2S3, eukaryotic translation initiation factor 2 subunit 3

1. Kimball SR, et al. Int J Biochem Cell Biol. 1999;31:25-9. 2. Gregory LC, et al. EBioMedicine. 2019;42:470-80

EIF2S3

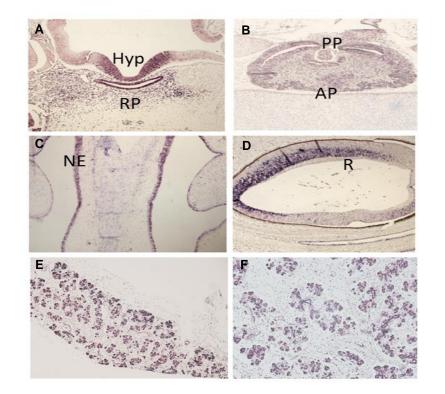
- The *EIF2S3* gene encodes the gamma subunit of Eukaryotic translation initiation factor 2 (eIF2)
- eIF2γ is the largest subunit (52kDa) of this heterotrimeric GTP-binding protein and contains all 3 consensus GTP-binding domains
- eIF2 localises to the nucleus and functions in the early steps of protein synthesis by forming a ternary complex with GTP and Met-tRNAi
- Binds to the mRNA at the 5' end to form a 43S pre-initiation complex, which scans mRNA to select the AUG start codon for protein synthesis

Taken from Kimball SR, et al. 1999

EIF, eukaryotic translation initiation factor; EIF2S3, eukaryotic translation initiation factor 2 subunit 3; GDP, guanosine diphosphate; GTP, guanosine triphosphate; mRNA, messenger RNA; met-tRNAi, methionyl initiator tRNA

1. Kimball SR, et al. Int J Biochem Cell Biol. 1999;31:25-9. 2. Gregory LC, et al. EBioMedicine. 2019;42:470-80

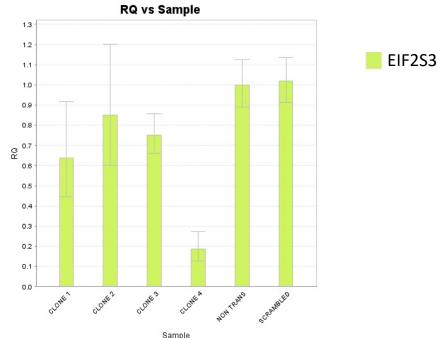
PREVIOUS STUDIES: MEHMO SYNDROME



MEHMO: Mental retardation, Epilepsy, Hypogonadism, Microcephaly, Obesity

Borck et al. 2012 Mol Cell	<u>Moortgat et al. 2016 AJMG</u>	<u>Skopkova et al. 2017 Hum Mutat</u> Stanik J et al. 2018 Physiol Res	<u>This study – Pedigree 1</u>
EIF2S3, p.I222T in the highly conserved GTP-binding (G) domain	EIF2S3, p.1259M and p.1465Sfs*4 in two unrelated pedigrees in the C-terminal domain	EIF2S3, p.I465Sfs*4 and pS108R in four unrelated pedigrees	EIF2S3, p.P432S in the C-terminal domain
 <u>Three males: 2 brothers and</u> <u>maternal uncle</u> Intellectual disability (moderate to severe) Microcephaly Short stature with GHD in two patients Facial dysmorphic features Epilepsy Thin corpus callosum on MRI Enlarged lateral ventricles on MRI Obesity 	 Three males: 2 brothers, 1 unrelated male Severe intellectual disability Microcephaly GHD Hypoglycaemia Epilepsy Thin corpus callosum on MRI Normal pituitary and stalk on MRI Global white matter loss on MRI 	 Four unrelated male patients: Microcephaly Seizures Hypotonia (axial) Hypertonia (peripheral) Hypogonadism Developmental delay Obesity (Infancy onset) Neonatal hypoglycaemia Early onset diabetes 	 Three males: 2 brothers and maternal male cousin Central hypothyroidism GHD Unique pancreatic phenotype: fluctuation between hyperinsulinaemic hypoglycaemia and hyperglycaemia Small anterior pituitary on MRI Thin corpus callosum on MRI

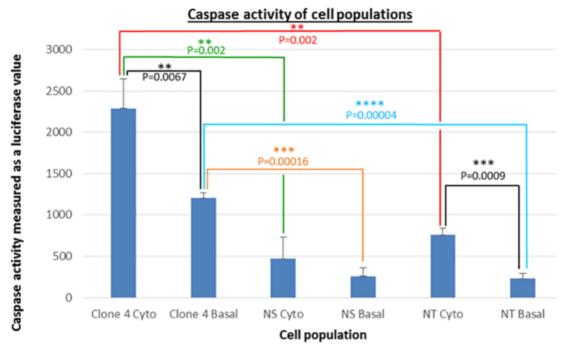
EXPRESSION PATTERN OF *EIF2S3*


AP, anterior pituitary; EIF2S3, eukaryotic translation initiation factor 2 subunit 3; Hyp, hypothalamus; NE, nasal epithelium; PP, posterior pituitary; RP, Rathke's pouch; R, retina

Gregory LC, et al. EBioMedicine. 2019;42:470-80

KNOCKDOWN OF EIF2S3 IN A PANCREATIC CELL LINE

Stable knockdown of EIF2S3 in pancreatic cell line 1.1B4, a hybrid cell line formed by the electrofusion of a primary culture of human pancreatic islets with PANC-1, a human pancreatic ductal carcinoma cell line


Relative quantification of *EIF2S3* expression, against *GAPDH*, *B*-ACTIN and *HPRT* in cDNA derived from transduced 1.1B4 cells, compared to non-transduced cells

cDNA, complementary DNA; EIF2S3, eukaryotic translation initiation factor 2 subunit 3; GAPGH, glyceraldehyde 3-phosphate dehydrogenase; HPRT, hypoxanthine phosphoribosyltransferase; RQ, relative quantification

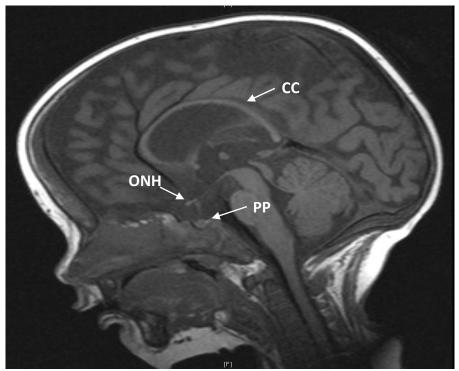
Gregory LC, et al. EBioMedicine. 2019;42:470-80

INCREASED APOPTOSIS IN EIF2S3 KNOCK DOWN PANCREATIC CELLS

Significant increase in caspase activity in the *EIF2S3* KO cell line compared to controls

Cyto, cytokine; EIF2S3, eukaryotic translation initiation factor 2 subunit 3; KO, knockout; NS, scrambled non-silencing; NT, non-transduced Gregory LC, et al. EBioMedicine. 2019;42:470-80

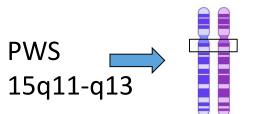
MAGEL2 C.1996DUPC, P.Q666PFS*47



Patient	Clinical phenotype
1 - female (GOSH, London)	 GHD Arthrogryposis Dysmorphic features: Bulbar palsy Developmental delay Visual concerns - Squint, mild optic nerve hypoplasia (ONH), cerebral visual impairment Central sleep apnoea Scoliosis Gastro-oesophageal reflux
2-3 - female non- (GOSH, London) De no	 MAGEL2 c.1996dupC, p.Q666Pfs*47 Global developmental delay ONH
	 Central sleep apnoea Scoliosis
4 - Male (Santiago hospital, Chile)	 MPHD: GHD, ACTH insufficiency Hyperprolactinaemia Arthrogryposis Dysmorphic features Micrognathia Central sleep apnoea Cryptorchidism with bilateral orchidopexies Strabismus MRI: Hypoplastic pituitary

ACTH, adrenocorticotropic hormone; GHD, growth hormone deficiency; GOSH, Great Ormond Street Hospital; MPHD, multiple pituitary hormone deficiencies; MRI, magnetic resonance imaging; ONH, optic nerve hypoplasia

MRI OF TWIN WITH *MAGEL2* C.1996DUPC, P.Q666PFS*47



CC, corpus callosum; MRI, magnetic resonance imaging; ONH, optic nerve hypoplasia; PP, posterior pituitary Gregory LC, et al. J Clin Endocrinol Metab. 2019;104:5737-50

MAGEL2

5 maternally imprinted (paternally expressed) genes: *MKRN3*, <u>**MAGEL**</u>2, NDN, NPAP1, SNURF-SNRPN

Variable features reminiscent of PWS but with autism spectrum disorder (ASD) and contractures of the small finger joints (arthrogryposis) without hyperphagia and subsequent obesity (Schaaf 2013) Schaaf-Yang syndrome (SHFYNG) (Schaaf et al 2013)

MAGEL2 BACKGROUND

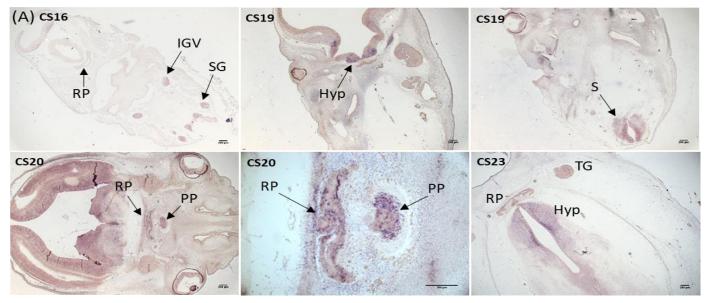
- *MAGEL2* is a member of the type II MAGE gene family involved in neurogenesis and brain function^{1,2}
- The role of MAGEL2:
 - Enhance ubiquitin ligase activity³
 - Act as a regulator of retrograde transport
 - Promote endosomal F-actin assembly
 - Involved in the regulation of the circadian clock⁴
- <u>Magel2-null mice</u> present with similar features to PWS in humans: neonatal growth retardation, excessive weight gain after weaning, impaired hypothalamic regulation and reduced fertility⁵⁻⁸
- POMC neuron activity and its communication with downstream targets is significantly compromised⁹
- Oxytocin neuron activity is suppressed¹⁰

POMC, proopiomelanocortin; PWS, Prader-Willi Syndrome

^{1.} Bischof JM, et al. Dev Dyn. 2003;228:475-9. 2. López-Sánchez N, et al. Physiol Genomics. 2007;30:156-71. 3. Doyle JM, et al. Mol Cell. 2010;39:963-74. 4. Tacer KF, et al. Biochem J. 2017;474:2177-90. 5. Bischof JM, et al. Hum Mol Genet. 2007;16:2713-9. 6. Hao YH, et al. Mol Cell. 2015;59:956-69. 7. Mercer RE, et al. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:1085-99. 8. Tenesse AA, et al. Endocrinol 2011;152:967-78. 9. Oncul M, et al. Hum Mol Genet. 2018;27:3129-36. 10. Ates T, et al. Neurobiol Dis. 2019;121:58-64

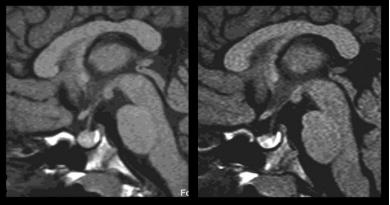
MAGEL2 MUTATIONS

- The *MAGEL2* mutation has been identified in multiple SHFYNG patients:
 - c.1996**dup**C, p.Q666Pfs*47
 - c.1996**del**C, p.Q666fs
- The majority had arthrogryposis (ranging in severity), short stature and hypogonadism all common features seen in SHFYNG patients
- <u>Enya et al</u> Two siblings and an unrelated female patient with SHFYNG carried MAGEL2 truncations, p.Q638* and p.S1044* respectively¹:
 - Central diabetes insipidus and gonadotrophin deficiency (1 sibling)
 - Panhypopituitarism including GHD, central hypothyroidism, adrenal insufficiency, gonadotrophin deficiency, with a hypoplastic pituitary gland in female patient
- Jobling et al MAGEL2 mutations give rise to Chitayat-Hall syndrome. Chitayat-Hall syndrome and SHFYNG share a common aetiology²


GHD, growth hormone deficiency; SHFYNG, Schaaf-Yang syndrome

1. Enya T, et al. Am J Med Genet A. 2018;176:707-11. 2. Jobling R, et al. J Med Genet. 2018;55:316-21

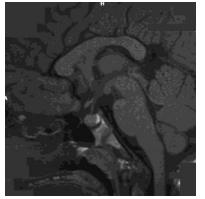
HUMAN EXPRESSION OF *MAGEL2* DURING EMBRYONIC BRAIN DEVELOPMENT


CS16 (GA: 5.5 weeks), CS19 (GA: 6 weeks), CS20 (GA: 7 weeks), CS23 (GA: 8 weeks)

CS, Carnegie stage; GA, gestational age; Hyp, hypothalamus; IGV, inferior ganglion of vagus nerve; PP, posterior pituitary; RP, Rathke's pouch; S, spinal cord; SG, spinal ganglia; TG, trigeminal ganglia

Gregory LC, et al. J Clin Endocrinol Metab. 2019;104:5737-50

PROP1 DEFICIENCY



JUNE 2002

GH, Prolactin, TSH and LH/FSH deficiencies Autosomal recessive Phenotypic variability

FEBRUARY 2004

FSH, follicle-stimulating hormone; GH, growth hormone; LH, luteinizing hormone; TSH, thyroid-stimulating hormone. Fang Q, et al. Endocr Rev. 2016;37:636-75

SEVERE DWARFISM IN A BOY WITH POU1F1 DEFICIENCY

- Pituitary-specific transcription factor
- Determination, proliferation and survival of thyrotrophs, lactotrophs and somatotrophs
- Expression of GH, PRL, β TSH, GHRHR genes
- GH, PRL and variable TSH deficiency
- Autosomal recessive/dominant

GENES CURRENTLY IMPLICATED IN CONGENITAL HYPOPITUITARISM

<u>Gene with</u> <u>reported variants</u>	<u>Phenotype</u>	<u>Mode of</u> <u>inheritance</u>	<u>Gene with</u> <u>reported variants</u>	<u>Phenotype</u>	<u>Mode of</u> inheritance
ARNT2	CPHD, congenital abnormalities of the kidneys and urinary tract	Recessive	GHRHR	IGHD Type IB	Recessive or Dominant (rare)
CDON	PSIS	Dominant	GLI2	HPE, IGHD/CPHD, polydactyly, single central incisor	Dominant: haploinsufficiency
EIF2S3	GHD, TSHD, Glucose dysregulation, MEHMO syndrome	X-linked	GPR161	PSIS	Recessive
			HESX1	IGHD, CPHD, SOD	Dominant or
FGF8	НН/КS; НРЕ	Dominant			Recessive
FGFR1	HH/KS, SOD	Dominant Dominant	IFT172	GHD, retinopathy, metaphyseal dysplasia, renal failure (ciliopathies)	Compound heterozygous
FOXA2	CPHD, HI, childhood-onset diabetes, choroidal coloboma, biliary atresia (cardiac/endoderm-derived organ abnormalities)		IGSF1	TSHD, hyperprolactinaemia, transient GHD; usually with macro- orchidism	X-linked
			KAL1	HH/KS	X-linked
GH1	IGHD Type IA	Recessive	KCNQ1	GHD, maternally inherited gingival fibromatosis	Dominant
	IGHD Type IB	Recessive	LHX3	CPHD, short neck with limited rotation	Recessive
	IGHD Type II	Dominant			

CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency; HH, hypogonadotropic hypogonadism; HI, congenital hyperinsulinism; HPE, holoprosencephaly; IAD, isolated adrenocortical deficiency; IGHD, isolated growth hormone deficiency; KS, Kallmann syndrome; MEHMO, mental retardation, epileptic seizures, hypogonadism with hypogenitalism, microcephaly and obesity; PSIS, pituitary stalk interruption syndrome; SOD, septo-optic dysplasia; TSHD, thyroid-stimulating hormone deficiency. Adapted from Gregory LC, Dattani MT. [Published online ahead of print Nov 8, 2019]. J Clin Endocrinol Metab. doi: 10.1210/clinem/dgz184

GENES CURRENTLY IMPLICATED IN CONGENITAL HYPOPITUITARISM

<u>Gene with</u> <u>reported variants</u>	<u>Phenotype</u>	<u>Mode of</u> <u>inheritance</u>	<u>Gene with</u> <u>reported variants</u>	<u>Phenotype</u>	<u>Mode of</u> <u>inheritance</u>
LHX4	CPHD, Chiari malformation, cerebellar abnormalities, respiratory distress	Dominant or Recessive	RAX	Anophthalmia / microphthalmia, CPHD, DI, and Cleft Palate	Recessive or Compound heterozygous
OTX2	IGHD, CPHD, SOD,	Dominant: haploinsufficiency or dominant negative	RNPC3	IGHD	Recessive
	anophthalmia/microphthalmia , retinal dystrophy		ROBO1	PSIS	Dominant
PCSK1	IAD, GHD, TSHD, DI, malabsorption	Dominant, Compound heterozygous	SOX2	HH, anophthalmia/ microphthalmia, learning	Dominant
PNPLA6	Oliver–McFarlane and Laurence–Moon syndrome;	Recessive		difficulties, hypothalamo- pituitary tumours	
	GH and gonadotrophin deficiencies		SOX3	GHD, CPHD, absent infundibulum, persistent	X-linked
РОМС	IAD; early-onset obesity and	Recessive	TOLAX	craniopharyngeal canal	X Baland
001454	red hair pigmentation		TBL1X	TSHD, ASD	X-linked
POU1F1	GH, TSH and ACTH deficiencies	Dominant or Recessive	TBX19	IAD	Recessive
PROKR2	HH/KS	Recessive	TCF7L1	SOD	Dominant
PROP1	CPHD, pituitary tumors	Recessive			
RAX	Anophthalmia/microphthalmi	Recessive or Compound	TRHR	TSHD	Recessive
	a, CPHD, DI, and Cleft Palate	heterozygous	TSHB	TSHD	Recessive

ACTH, adrenocorticotropic hormone; ASD, autism spectrum disorder; CPHD, combined pituitary hormone deficiency; DI, diabetes insipidus; GH, growth hormone; GHD, growth hormone deficiency; HH, hypogonadotropic hypogonadism; IAD, isolated adrenocortical deficiency; IGHD, isolated growth hormone deficiency; KS, Kallmann syndrome; PSIS, pituitary stalk interruption syndrome; SOD, septo-optic dysplasia; TSH, thyroid-stimulating hormone; TSHD, thyroid-stimulating hormone deficiency. Adapted from Gregory LC, Dattani MT. [Published online ahead of print Nov 8, 2019]. J Clin Endocrinol Metab. doi: 10.1210/clinem/dgz184

NEW GENES?

- *TCF7L1* SOD
- KCNQ1 CPHD, maternally inherited gingival fibromatosis
- FOXA2 Congenital Hyperinsulinism, MPHD, craniofacial dysmorphism, coloboma
- RAX Anophthalmia, CLAP, MPHD

- *IFT172*: ciliopathy; APH, EPP, retinopathy, metaphyseal dysplasia, renal failure
- GPR161: Pituitary stalk interruption syndrome
- CDON: PSIS Sonic Hedgehog signaling protein
- *ROBO1*: PSIS Slit/Robo signalling mediates axonal guidance

APH, anterior pituitary hypoplasia; CLAP, cleft lip, alveolus and palate; CPHD, combined pituitary hormone deficiency; EPP, ectopic posterior pituitary; MPHD, multiple pituitary hormone deficiencies; PSIS, pituitary stalk interruption syndrome; SOD, septo-optic dysplasia 1. Adapted from Gregory LC, Dattani MT. J Clin Endocrinol Metab. Epub Nov 8, 2019. 2. Fang Q, et al. Endocr Rev. 2016;37:636-75

CONCLUSIONS

- Pleiotropic phenotypes hypothalamic v pituitary
- Mutations/variations in genes implicated in pituitary development rare
- Variable inheritance
- Variably penetrant
 - Role of other genes
 - Role of environmental factors
- Evolution of phenotypes eg *PROP1, GH1*
- Careful interpretation required of any changes
- Novel causative pathways emerging eg 100K Genome project
- Care with genetic counseling

ACKNOWLEDGEMENTS

MRC NIMR/CRICK

Iain Robinson Rosa Beddington Robin Lovell-Badge Karine Rizotti

Funding sources

Special Trustees, Middlesex Hospital Medical Research Council Child Health Research Appeal Trust Child Growth Foundation Novo Nordisk Wellcome Trust BSPED Birth Defects Foundation GOSH CC

Collaborators

Alejandro Martinez-Aguayo Angham Mutair Khadija Humayun Sally Camper Paul Letissier Alison Salt Naomi Dale Simon Rhodes Maria Arriazu Referring clinicians

GOSGENE

PATIENTS AND FAMILIES

UCL GOS ICH

Juan-Pedro Martinez-Barbera **Carles Gaston-Massuet** Louise Gregory Dan Kelberman Sandy Alatzoglou Emma Webb **Cynthia Andoniadou Kathryn Woods** Mark McCabe **Dave McNay** James Turton Luciani Carvalho Maria Bitner-Glindzicz Su Jayakody **Dianne Gerrelli** Jane Sowden John Achermann

onnect®

POWERED BY COR2ED