

POWERED BY COR2ED

EXPERTS KNOWLEDGE SHARE:

TREATMENT SEQUENCING IN ADVANCED HCC

Prof. Peter Galle, Dr. Ruth He, Dr. Kirti Shetty and Dr. David Kleiner

Monday November 11th 2019

Boston, USA

EXPERTS KNOWLEDGE SHARE OBJECTIVES

TREATMENT SEQUENCING IN ADVANCED HCC

Objectives:

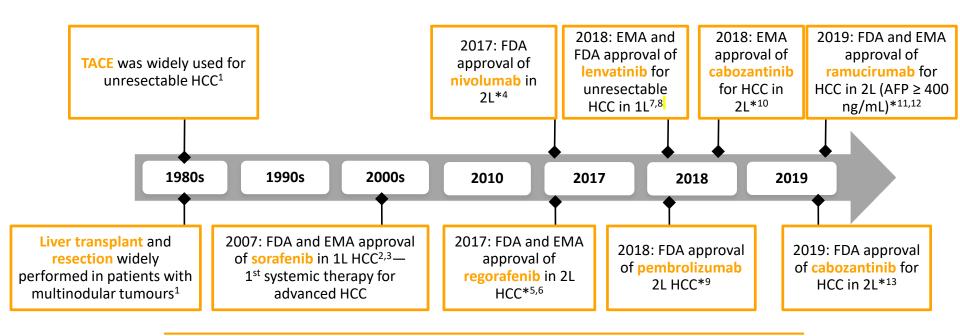
- Provide an overview of the systemic treatment landscape in HCC
 - Including TKIs and immune therapies
- Discuss immune-related hepatotoxicity
- Explore the future role of tissue-based biomarkers in HCC

DISCLAIMER

Please note:

The views expressed within this presentation are the personal opinions of the authors. They do not necessarily represent the views of the author's academic institution or the rest of the HCC CONNECT group.

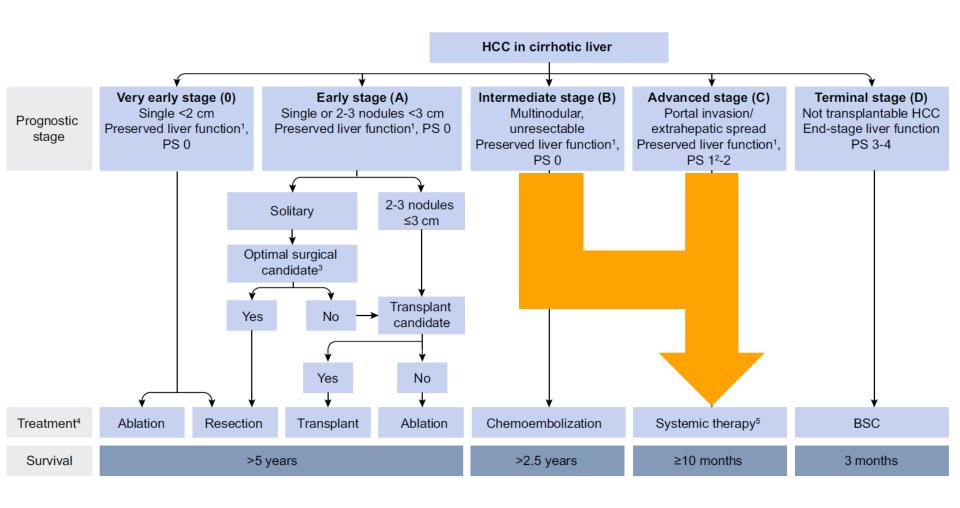
This meeting is supported by an Independent Educational Grant from Bayer.


OVERVIEW OF THE SYSTEMIC TREATMENT LANDSCAPE IN HCC

Peter R. Galle
University of Mainz, Germany

HISTORY OF THE TREATMENT LANDSCAPE FOR HCC

TREATMENT OPTIONS WERE LIMITED FOR UNRESECTABLE HCC


7 (FDA) or 5 (EMA) systemic agents have been approved for use in HCC

^{*}after treatment with sorafenib.

¹L, first line; 2L, second line; AFP, alpha fetoprotein; EMA, European Medicines Agency; FDA, US Food and Drug Administration; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolisation

^{1.} Tang ZY. 2001. Available from: www.ncbi.nlm.nih.gov/books/NBK6903. 2. FDA PI Nexavar. 3. SmPC Nexavar. 4. FDA PI Opdivo. 5. FDA PI Stivarga. 6. FDA PI Stivarga.

PHASE 3 CLINICAL TRIALS TESTING MOLECULAR TARGETED THERAPIES AND DEVICES IN ADVANCED HCC

FIRST LINE¹

SECOND LINE¹

	FIRST LINE					20	CUN	ID LINE*			
	Drugs	N = 5966	Median OS (months)	HR (95% CI)	p-value		Drugs	N = 3123	Median OS (months)	HR (95% CI)	p-value
SHARP	sorafenib	299	10.7	0.69	<0.001	BRISK-PS	brivanib	263	9.4	0.89	0.33
JIIAIII	placebo	303	7.9	(0.55-0.87)	10.001	DNISK-F3	placebo	132	8.2	(0.69-1.15)	0.33
Asia-Pacific	sorafenib	150	6.5	0.68	0.01	EVOLVE-1	everolimus	362	7.6	1.05	0.68
Asia-Pacific	placebo	76	4.2	(0.5 0.93)	0.01	EVOLVE-1	placebo	184	7.3	(0.86-1.27)	0.08
SUN1170	sunitinib	530	7.9	1.3	0.001 REACH	ramucirumab	283	9.2	0.86	0.13	
20141170	sorafenib	544	10.2	(1.13-1.5)		REACH	placebo	282	7.6	(0.72-1.05)	0.13
DDICK EL	brivanib	577	9.5	1.07	0.31	RESORCE	regorafenib	379	10.6	0.63	<0.001
BRISK-FL	sorafenib	578	9.9	(0.94-1.23)			placebo	194	7.8	(0.50-0.79)	
LICUT	linifanib	514	9.1	1.046		METIV-HCC	tivantinib	226	8.4	0.97	NS
LIGHT	sorafenib	521	9.8	(0.896-1.221)		IVIETTV-HCC	placebo	114	9.1	(0.75-1.25)	INO
	sorafenib +			0.92		CELECTIAL	cabozantinib	467	10.2	0.76	0.0040
SEARCH	erlotinib	362	9.5	(0.781 - 1.106)	0.2	CELESTIAL	placebo	237	8.0	(0.63-0.92)	0.0049
	sorafenib	358	8.5	(0.781 - 1.100)		DEACH 22	ramucirumab	197	8.5	0.71	0.0400
Study 304/	lenvatinib	478	13.6	0.92	<0.05	REACH-2 ²	placebo	95	7.3	(0.531-0.949)	0.0199
REFLECT	sorafenib	476	12.3	(0.79-1.06)	<0.05						
ALLIANCE	sorafenib+doxo	173	9.3	1.06 NS							
ALLIANCE	sorafenib	173	10.5	(0.8-1.4)	INS		NI-	-0 3	221		
SILIUS	sorafenib + HIAC	88	11.8	1	NS	N=9,381					

NS

NS

(0.7-1.4)

1.15

(0.94-1.41)

1.12

(0.88-1.42)

11.8 8

> 9.9 8.8

10

102

Total

459

182

178

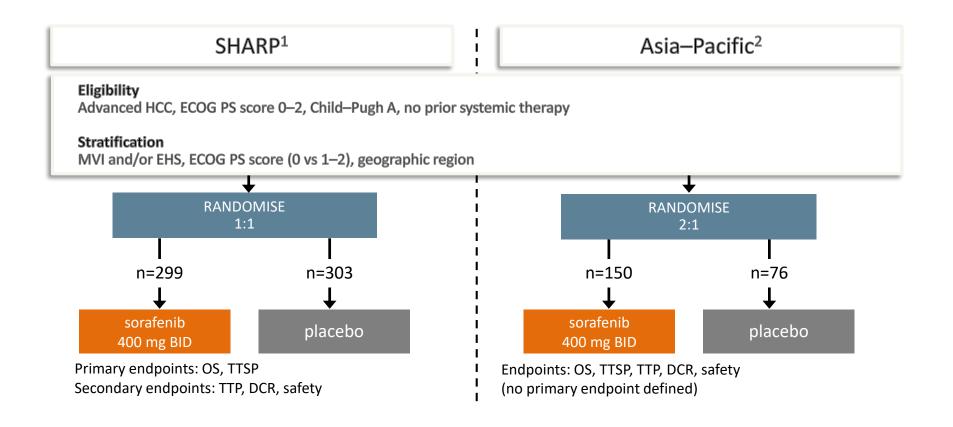
sorafenib

SIRT (Y-90)

sorafenib

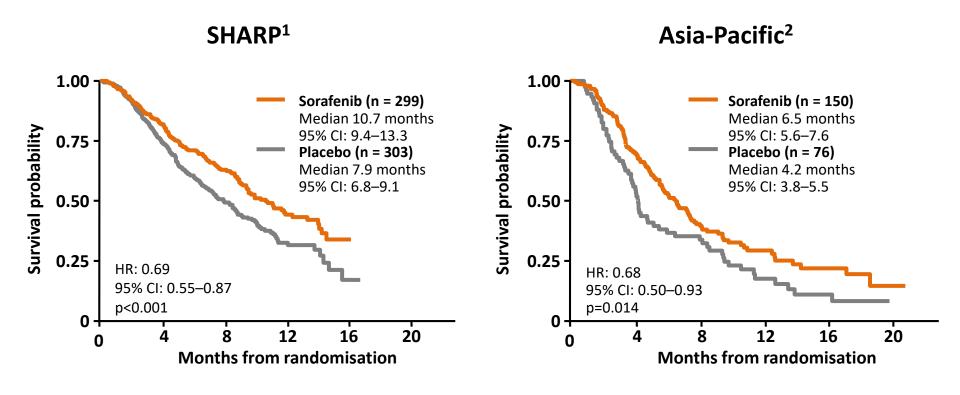
SIRT (Y-90)

sorafenib


SARAH

SIRveNIB

CI, confidence interval; doxo, doxorubicin; HIAC, hepatic intra-arterial chemotherapy; HR, hazard ratio; OS, overall survival; SIRT, selective internal radiation therapy


PHASE 3 SHARP AND ASIA-PACIFIC TRIALS

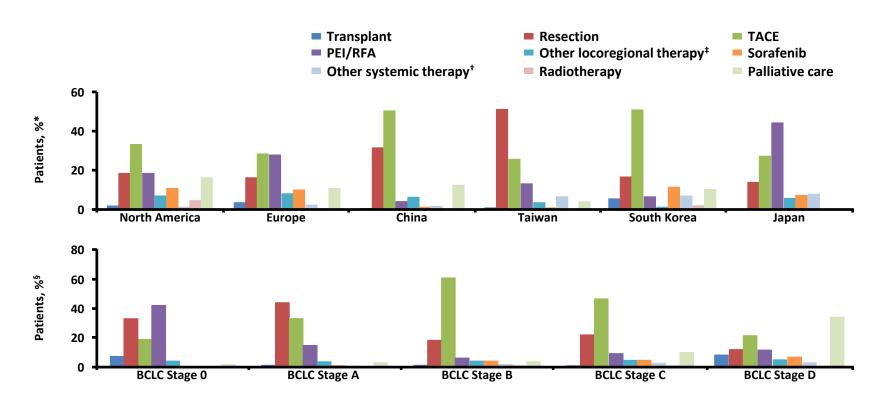
SHARP AND ASIA-PACIFIC TRIALS: OS

PHASE 3 SHARP TRIAL: BEST RESPONSE BY RECIST

(INDEPENDENT REVIEW)

	Sorafenib n=299 %	Placebo n=303 %
Overall response*		
Complete response	0	0
Partial response	2	1
Stable disease	71	67
Progressive disease	18	24
Progression-free rate at 4 months	62	42

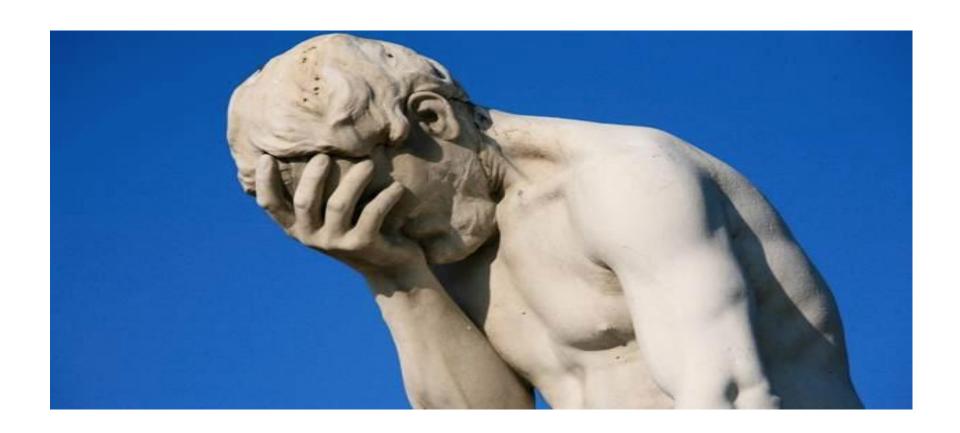
PHASE 3 SHARP TRIAL: TOXICITY



	Sorafenib n=297		Placebo	n=302
Toxicity (%)	All	Grade 3/4	All	Grade 3/4
Anorexia	14	<1	3	1
Weight loss	9	2	1	0
Alopecia	14	0	2	0
Hand-foot skin reaction	21	8	3	<1
Pain (abdominal)	8	2	3	1
Nausea	11	<1	8	1
Vomiting	5	1	3	1
Diarrhoea	39	8	11	2
Liver dysfunction	<1	<1	0	0
Bleeding	7	1	4	1

BRIDGE STUDY

FIRST RECORDED HCC TREATMENT BY COUNTRY/REGION AND BCLC STAGE

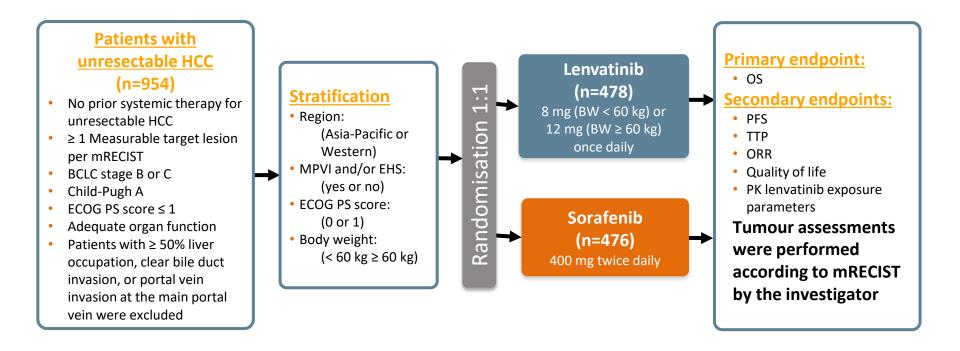


% based on percentage of population with known values

- † Other than sorafenib
- ‡ Other than PEI/RFA or TACE
- § % based on number of patients with data available; total may add up to >100% if more than one treatment was started concurrently

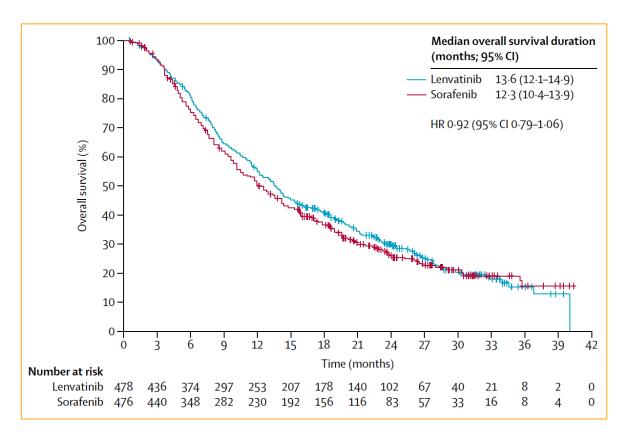
OTHER PHASE 3 TRIALS

FIRST-LINE PHASE 3 TRIALS TESTING MOLECULAR TARGETED THERAPIES AND DEVICES IN ADVANCED HCC


	Drugs	N = 5966	Median OS (months)	HR (95% CI)	p-value	
CULADO	sorafenib	299	10.7	0.69		
SHARP	placebo	303	7.9	(0.55-0.87)	<0.001	
Asia-Pacific	sorafenib	150	6.5	0.68	0.01	
Asia-Pacific	placebo	76	4.2	(0.5 0.93)	0.01	
SUN1170	sunitinib	530	7.9	1.3	0.001	
SUNTITU	sorafenib	544	10.2	(1.13-1.5)	0.001	
BRISK-FL	brivanib	577	9.5	1.07	0.31	
DKISK-FL	sorafenib	578	9.9	(0.94-1.23)	0.31	
LIGHT	linifanib	514	9.1	1.046		
	sorafenib	521	9.8	(0.896-1.221)		
SEARCH	sorafenib + erlotinib	362	9.5	0.92	0.2	
SLARCH	sorafenib	358	8.5	(0.781 - 1.106)	0.2	
Study 304/	lenvatinib	478	13.6	0.92	<0.05	
REFLECT	sorafenib	476	12.3	(0.79-1.06)	\0.03	
ALLIANCE	sorafenib+doxo	173	9.3	1.06	NS	
ALLIANCE	sorafenib	173	10.5	(0.8-1.4)	NS	
SILIUS	sorafenib + HIAC	88	11.8	1	NS	
SILIUS	sorafenib	102	11.8	(0.7-1.4)	NS	
SARAH	SIRT (Y-90)	Total	8	1.15	NS	
JANAII	sorafenib	459	9.9	(0.94-1.41)	INS	
SIRveNIB	SIRT (Y-90)	182	8.8	1.12	NS	
SILVEINID	sorafenib	178	10	(0.88-1.42)	INS	

CI, confidence interval; doxo, doxorubicin; HIAC, hepatic intra-arterial chemotherapy; HR, hazard ratio; OS, overall survival; SIRT, selective internal radiation therapy EASL. J Hepatol 2018;69:182-236

REFLECT STUDY STUDY SCHEMA



GLOBAL, RANDOMISED, OPEN-LABEL, PHASE 3 NONINFERIORITY STUDY

FRONTLINE LENVATINIB VS SORAFENIB IN UNRESECTABLE HCC: RESULTS

Patient selection:

Patients with 50% or higher liver occupation, obvious invasion of the bile duct, or invasion at the main portal vein were excluded from the study

FRONTLINE LENVATINIB VS SORAFENIB IN UNRESECTABLE HCC: RESULTS

Outcome (investigator review according to mRECIST)	Lenvatinib n=478	Sorafenib n=476	HR
Median OS, months (95% CI)	13.6 (12.1-14.9)	12.3 (10.4-13.9)	0.92
Median PFS, months (95% CI)*	7.4 (6.9-8.8)	3.7 (3.6-4.6)	0.66
Median TTP, months (95% CI)*	8.9 (7.4-9.2)	3.7 (3.6-5.4)	0.63
ORR, n (%)*	115 (24)	44 (9)	

*P<.00001

- Conclusion: Lenvatinib was non-inferior to sorafenib in OS in first-line setting for unresectable HCC
 - Statistically significant improvements in PFS, TTP and ORR for lenvatinib
 vs sorafenib

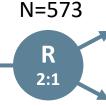
REFLECT STUDY MOST FREQUENT TEAEs (≥ 15%)

Adverse event, n (%)	Lenvatinil	Lenvatinib (n = 476)		n = 475)
	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3
Hypertension	201 (42)	111 (23)	144 (30)	68 (14)
Diarrhoea	184 (39)	20 (4)	220 (46)	20 (4)
Decreased appetite	162 (34)	22 (5)	127 (27)	6 (1)
Decreased weight	147 (31)	36 (8)	106 (22)	14 (3)
Fatigue	141 (30)	18 (4)	119 (25)	17 (4)
Palmar-plantar erythrodysaesthesia	128 (27)	14 (3)	249 (52)	54 (11)
Proteinuria	117 (25)	27 (6)	54 (11)	8 (2)
Dysphonia	113 (24)	1 (<1)	57 (12)	0
Nausea	93 (20)	4 (1)	68 (14)	4 (1)
Decreased platelet count	87 (18)	26 (5)	58 (12)	16 (3)
Abdominal pain	81 (17)	8 (2)	87 (18)	13 (3)
Hypothyroidism	78 (16)	0	8 (2)	0
Vomiting	77 (16)	6 (1)	36 (8)	5 (1)
Constipation	76 (16)	3 (1)	52 (11)	0
Elevated ASAT	65 (14)	24 (5)	80 (17)	38 (8)
Rash	46 (10)	0	76 (16)	2 (<1)
Alopecia	14 (3)	0	119 (25)	0
Increased blood bilirubin	71(15)	31 (7)	63 (13)	23 (5)

SECOND-LINE PHASE 3 TRIALS TESTING MOLECULAR TARGETED THERAPIES AND DEVICES IN ADVANCED HCC

	Drugs	N = 3123	Median OS (months)	HR (95% CI)	p-value
BRISK-PS ¹	brivanib	263	9.4	0.89	0.33
DINISK-1 3	placebo	132	8.2	(0.69-1.15)	0.55
EVOLVE-1 ¹	everolimus	362	7.6	1.05	0.68
EVOLVE-1	placebo	184	7.3	(0.86-1.27)	0.08
REACH ¹	ramucirumab	283	9.2	0.86	0.13
	placebo	282	7.6	(0.72-1.05)	0.13
RESORCE ¹	regorafenib	379	10.6	0.63	<0.001
NESONCE-	placebo	194	7.8	(0.50-0.79)	
METIV-HCC ¹	tivantinib	226	8.4	0.97	NS
METIV-HCC	placebo	114	9.1	(0.75-1.25)	INS
CELESTIAL ¹	cabozantinib	467	10.2	0.76	0.0040
	placebo	237	8.0	(0.63-0.92)	0.0049
REACH-2 ²	ramucirumab	197	8.5	0.71	0.0100
	placebo	95	7.3	(0.531-0.949)	0.0199

RESORCE TRIAL DESIGN



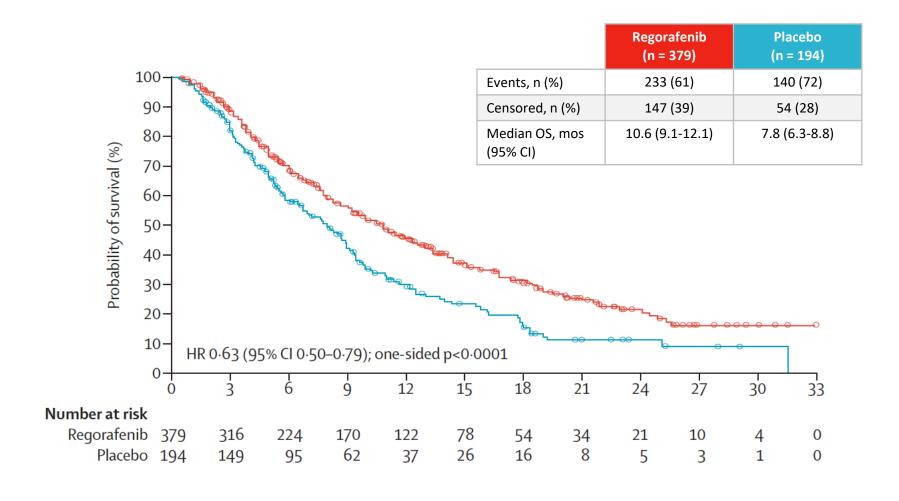
CLINICALTRIALS.GOV NCT01774344

HCC patients with documented radiological progression during sorafenib treatment

Stratified by:

- Geographic region (Asia vs ROW)
- Macrovascular invasion
- Extrahepatic disease
- ECOG PS (0 vs 1)
- AFP (<400 ng/mL vs ≥400 ng/mL

Regorafenib


160 mg po once daily
3 weeks on / 1 week off
(4-week cycle)
(n=379)

Placebo (n=194)

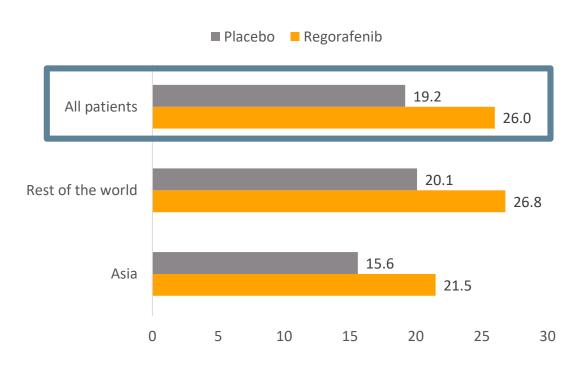
- 152 centres in 21 countries in North and South America, Europe, Australia, Asia
- All patients received best supportive care
- Treat until progression, unacceptable toxicity or withdrawal

RESORCE OS

BEST OVERALL TUMOUR RESPONSE

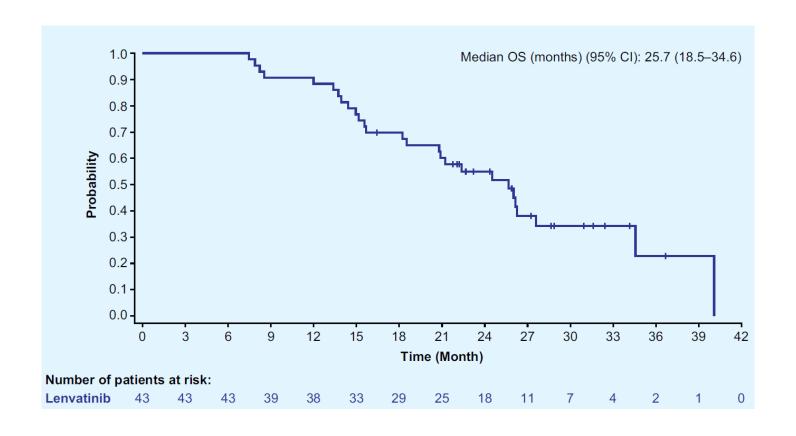
	mRI	<u>mRECIST</u>		Г 1.1	
	Regorafenib n=379	Placebo n=194	Regorafenib n=379	Placebo n=194	
ORR	10.6%	4.1%	6.6%	2.6%	
	P=0.01	(2-sided)	P=0.04 (2	l-sided)	
DCB	65.2%	36.1%	65.7%	34.5%	
DCR	<i>P</i> <0.001	<i>P</i> <0.001 (2-sided)		<i>P</i> <0.001 (2-sided)	
CR	0.5%	0	0	0	
PR	10.0%	4.1%	6.6%	2.6%	
SD	54.4%	32.0%	58.8%	32.0%	
Non CR/Non PD	0.3%	0	0.3%	0	
PD	22.7%	55.7%	22.4%	57.2%	
Not evaluable	5.0%	4.1%	5.0%	4.6%	
Not assessed	7.1%	4.1%	6.9%	3.6%	
Clinical progression*	22.7%	20.6%	22.7%	20.6%	

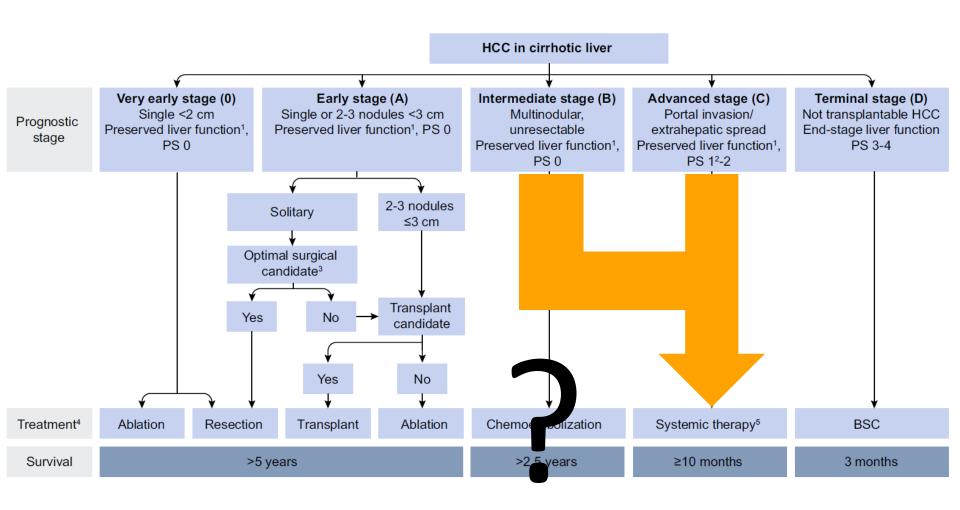
^{*}Worsening of ECOG PS≥3 or symptomatic deterioration including increase in liver function tests


MEDIAN OS OF 26 MONTHS FROM FIRST SORAFENIB DOSE TO DEATH ON REGORAFENIB

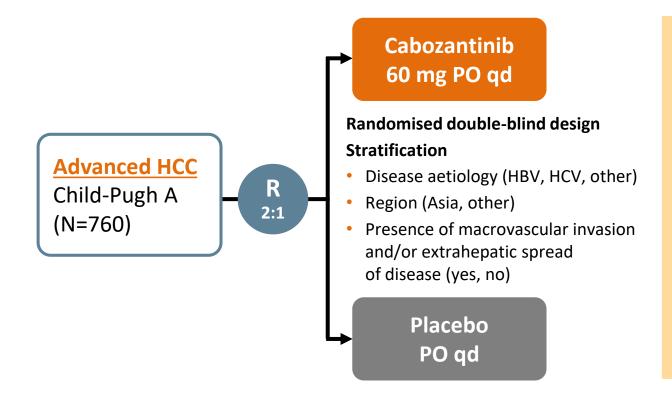
Survival rates from the start of sorafenib treatment

	Sorafenib– Regorafenib (n=379)	Sorafenib– Placebo (n=194)
n*	374	193
6 months	97%	97%
12 months	82%	76%
24 months	53%	42%
36 months	31%	20%
48 months	19%	12%
60 months	16%	3%
72 months	10%	3%


Time from start of prior sorafenib treatment to death on RESORCE study drug (months)


^{*} n = treated patients Finn RS, et al. J Hepat 2018;69:353-8

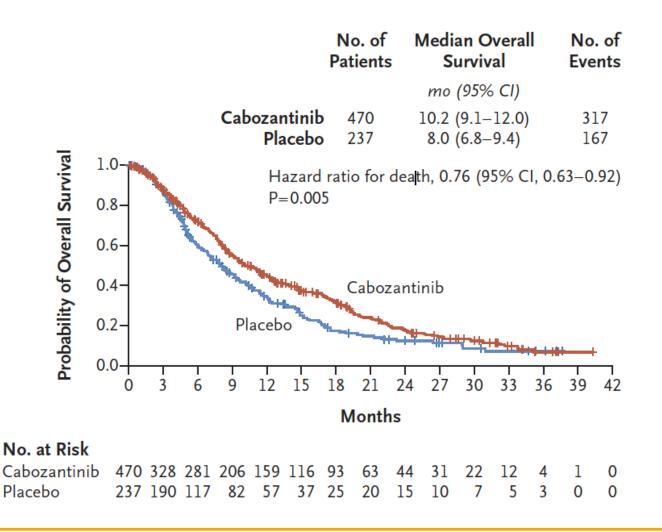
KAPLAN-MEIER ESTIMATE OF OS FOR LENVATINIB RESPONDERS WHO RECEIVED ANY POSTSTUDY ANTICANCER MEDICATION



CABOZANTINIB VERSUS PLACEBO IN PATIENTS WITH ADVANCED HEPATOCELLULAR CARCINOMA WHO HAVE RECEIVED PRIOR SORAFENIB: RESULTS FROM THE RANDOMIZED PHASE 3 CELESTIAL TRIAL

Abou-Alfa GK, Meyer T, Cheng AI, El-Khoueiry A, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Dadduzio V, Hessel C, Borgman-Hagey A, Schwab G, Kelley RK on behalf of the CELESTIAL Investigators

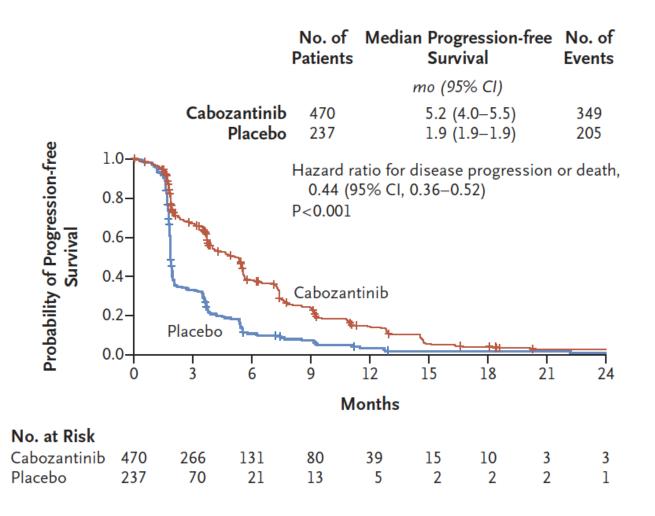
CELESTIAL STUDY: DESIGN


Tumour assessment every 8 weeks (RECIST 1.1)

Treatment until loss of clinical benefit or intolerable toxicity

No crossover allowed

CELESTIAL STUDY: OVERALL SURVIVAL



^{*}Critical p-value ≤0.021 for second interim analysis CI, confidence interval Abou-Alfa GK, et al. N Engl J Med 2018;379:54-63

CELESTIAL STUDY: PROGRESSION-FREE SURVIVAL

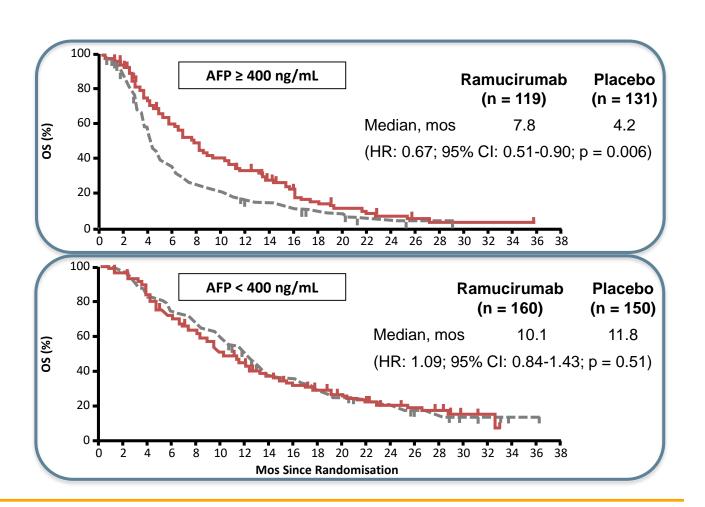
CELESTIAL STUDY: ALL-CAUSALITY GRADE 3 OR 4 AEs

Preferred term, %	Cabozantinib (N=467)	Placebo (N=237)
Any grade 3 or 4 AE	68	36
Palmar-plantar erythrodysaesthesia	17	0
Hypertension	16	2
ASAT increased	12	7
Fatigue	11	4
Diarrhoea	10	2
Asthenia	7	2
Decreased appetite	6	<1
Anaemia	4	5

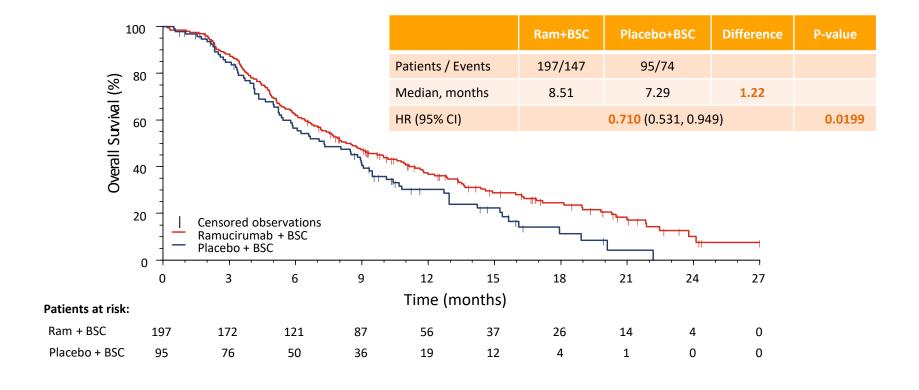
Treatment-related grade 5 AEs:

Cabozantinib (6 patients) hepatic failure, oesophagobronchial fistula, portal vein thrombosis,

upper gastrointestinal haemorrhage, pulmonary embolism, hepatorenal syndrome

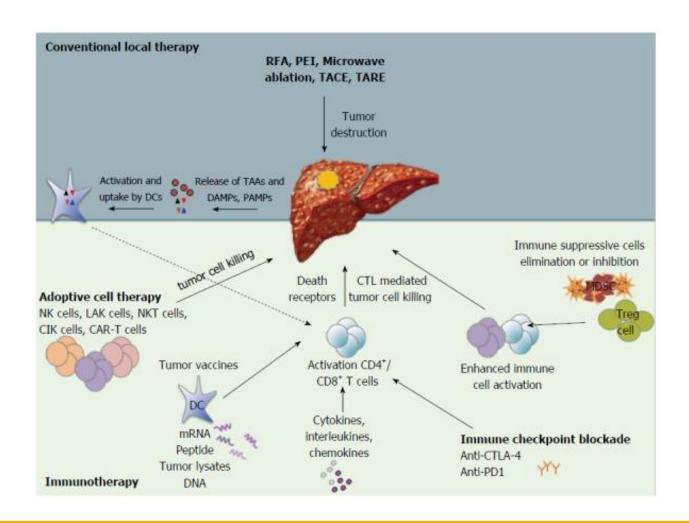

Placebo (1 patient) hepatic failure

BIOMARKER-DRIVEN PHASE 3 REACH TRIAL: SECOND-LINE TREATMENT WITH VEGFR2 INHIBITOR RAMUCIRUMAB

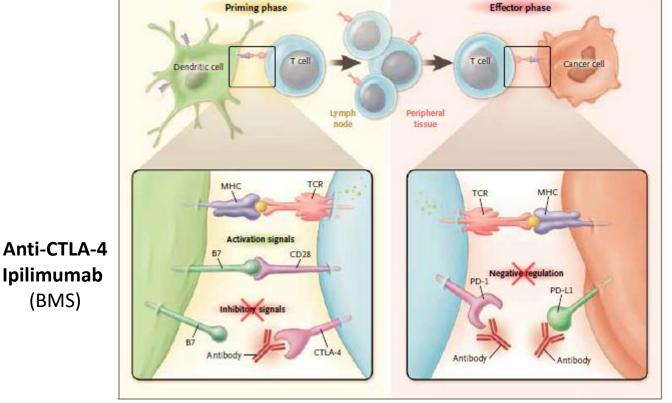

OS by AFP Level

RamucirumabCensoredPlaceboCensored

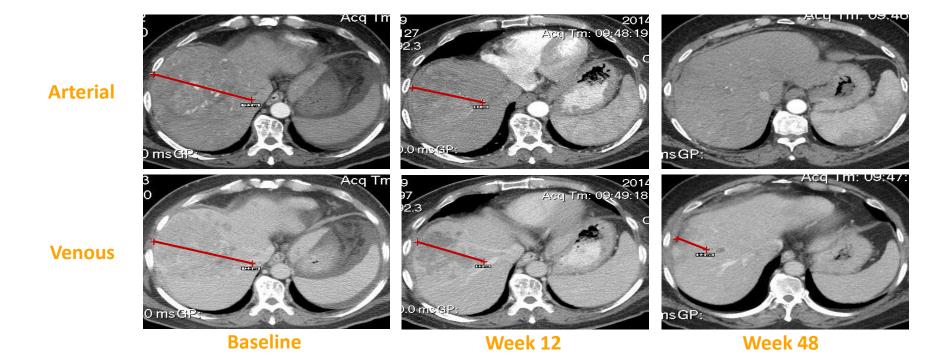
REACH-2: OVERALL SURVIVAL



INTRODUCTION TO IMMUNOTHERAPY STRATEGIES IN HCC


IMMUNOTHERAPY STRATEGIES IN HCC

BLOCKADE OF PD-1 OR CTLA-4 SIGNALLING IN TUMOUR **IMMUNOTHERAPY**


Anti-PD-1 Nivolumab (BMS) **Pembrolizumab** (Merck)

Anti-PD-L1 **Durvalumab** (AstraZeneca)

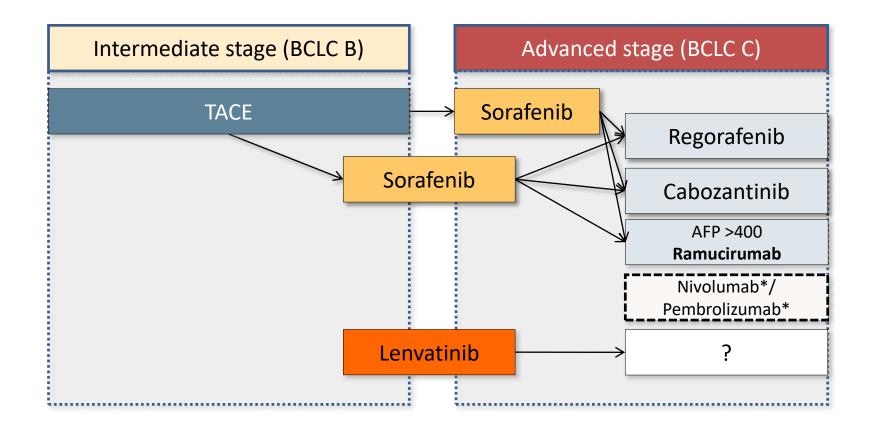
Ipilimumab (BMS)

DURABLE PARTIAL RESPONSE TO NIVOLUMAB

- 58-year old white male with HCV-infected HCC, ECOG PS score 0, Child-Pugh A5
- Progressed on sorafenib

IMMUNOTHERAPY FOR HCC

Study	Treatment (target)	N	Response rate (%)	PFS, months (95% CI)	OS, months (95% CI)	NCT number
CHECKMATE 040 Phase 1/2 ¹	Nivolumab (PD-1)	214	20	4.0 (2.9-5.4)	NR	NCT01658878
CHECKMATE 459 Phase 3 ²	Nivolumab (PD-1) vs sorafenib	371 vs 372	15 vs 7	3.7 (3.1-3.9) vs 3.8 (3.7-4.5)	16.4 (13.9-18.4) vs 14.7 (11.9-17.2)	NCT02576509
KEYNOTE 224, Phase 2 ³	Pembrolizumab (PD-1)	169	18	4.9 (3.4-7.2)	12.9 (9.7-15.5)	NCT02702414
KEYNOTE 240, Phase 3 ⁴	Pembrolizumab (PD-1) vs placebo	278 vs 135	18.3 vs 4.4	3.0 mo (2.8-4.1) vs 2.8 mo (2.5-4.1)	13.9 (11.6-16.0) vs 10.6 (8.3-13.5)	NCT02702401
IMbrave150, Phase 3 ⁵	Atezolizumab (PD-L1) + bevacizumab vs sorafenib	336 vs 165	27 vs 12	6.8 (5.7-8.3) vs 4.3 (4.0-5.6)	NE vs 13.2 (10.4-NE)	NCT03434379
Phase 1/2 ⁶	Durvalumab (PD-L1)	40	10	2.7 (1.4-5.3)	13.2 (6.3-21.1)	NCT01693562
Phase 1b ⁷	BGB-A317 (PD-1)	27	11.1*	NR	NR	NCT02407990
Phase 2 ⁸	Tremelimumab (CTLA-4)	17	17.6	6.48 (4.0-9.1)	8.2 (4.6-21.3)	NCT01008358


^{*} Confirmed + unconfirmed responses

CI, confidence interval; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; NE, not estimable; NR, not reported; PD-1, programmed death 1; PD-L1, programmed-death ligand 1

^{1.} El Kouheiry AB, et al. Lancet 2017;389:2492-502. 2. Yau, et al. ESMO 2019 Abstract #LBA38. 3. Zhu AX, et al. Lancet Oncol. 2018;19:940-52. 4. Finn R, et al. ASCO 2019. Abstract #4004. 5. Cheng A-L, et al. ESMO Asia 2019 Abstract #LBA3. 6. Wainberg ZA, et al. ASCO 2017. Abstract #4071. 7. Yen CJ, et al. WCGIC 2017. Abstract #P-140. 8. Sangro B, et al. J Hepatol 2013;59:81-8.

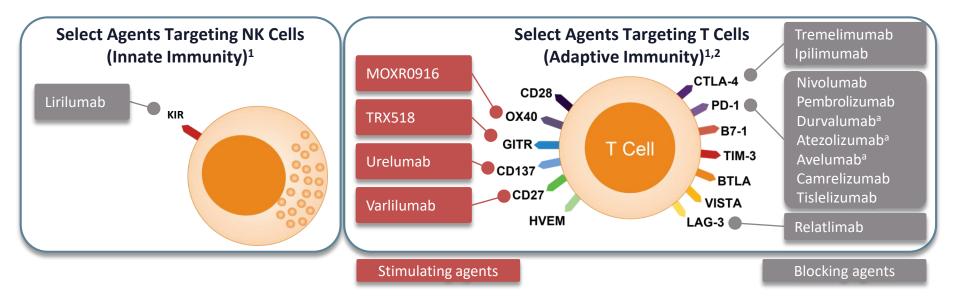
SYSTEMIC THERAPY IN uHCC IN 2019

CONCLUSIONS

- After nearly a decade, we have had 4 positive phase 3 studies of new targeted drugs in HCC that improve survival
 - Lenvatinib non-inferior to sorafenib, HR 0.92¹
 - Regorafenib vs placebo 2nd line, HR 0.63²
 - Cabozantinib vs placebo 2nd and 3rd line (HR 0.76 prior sorafenib)³
 - Ramucirumab vs placebo 2nd line, AFP high, HR 0.71⁴
- Nivolumab and pembrolizumab FDA approved as second-line treatment in the US based on single-arm phase 2 studies
 - Nivolumab: RR 15%, 4% CR CheckMate 459 phase 3 study negative⁵
 - Pembrolizumab: KeyNote 240 phase 3 study negative⁶
- Based on the recently presented data from the IMbrave150 study,
 atezolizumab + bevacizumab may become a new 1st line standard of care⁷

UNMET NEEDS IN HCC

- Better therapies in earlier settings
 - Adjuvant and neo-adjuvant settings
 - Combination/sequencing therapies with TACE or other locoregional therapies
- Approach to sequencing treatments in the second-line setting and beyond
- Improved strategies for patient selection
 - Biomarkers, viral aetiologies, liver function
- Definition of surrogate markers for OS
- Few treatment options exist for patients in Child-Pugh B (C)


IMMUNE-CHECKPOINT INHIBITORS IN HCC

Ruth He

Georgetown University Hospital, USA

TARGETING CHECKPOINTS AS AN APPROACH TO CANCER THERAPY

Not a complete list; several checkpoint-targeted agents are under investigation in the cancer setting³

^a These agents target PD-L1.

CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; KIR, killer cell immunoglobulin-like receptor; NK, natural killer; PD-1, programmed death 1; PD-L1, programmed-death ligand 1

^{1.} Adapted from Pardoll DM. Nat Rev Cancer. 2012;12:252-64. 2. Adapted from Mellman I, et al. Nature. 2011;480:480-9.

^{3.} http://www.clinicaltrials.gov. Accessed November 4, 2019.

CHECKPOINT INHIBITORS TESTED OR BEING TESTED FOR ADVANCED STAGE HCC

FDA Approved for Subsequent-Line Therapy if Disease Progression after sorafenib¹

B 1 1	lumal	-
NIIVO	บบทา	~
		•

Child-Pugh A or B7

Pembrolizumab

Child-Pugh A

Emerging Checkpoint-inhibitor Combinations Under Investigation for HCC²

Nivolumab

Anti-PD-1+ Anti-CTLA4

Targets PD-1 Phase 3: with ipilumumab in first line

Durvalumab

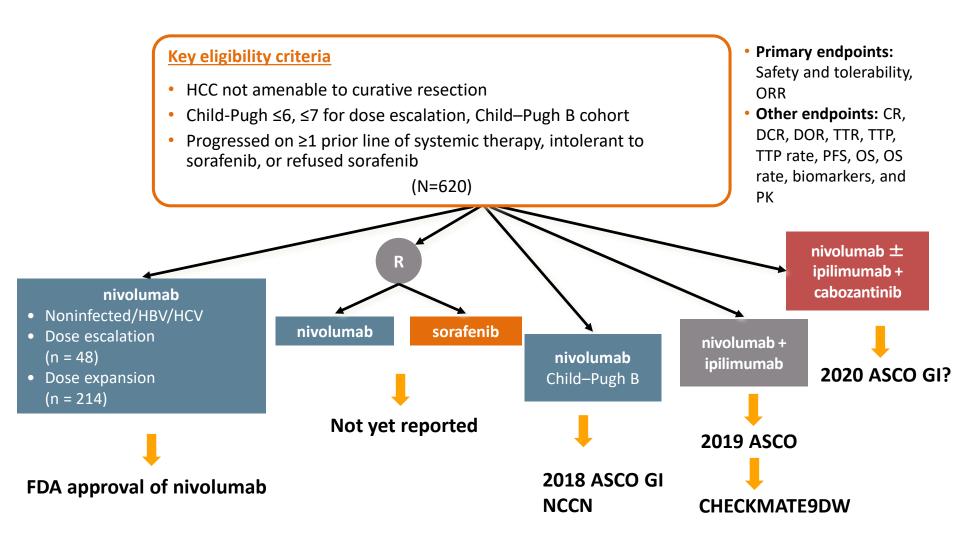
Targets PD-L1 Phase 3: With tremelimumab in first line

Anti-PD-1+ Anti-VEGF/TKI

Pembrolizumab

Targets PD-1 Phase 3: with lenvatinib in first line

Atezolizumab


Targets PD-L1

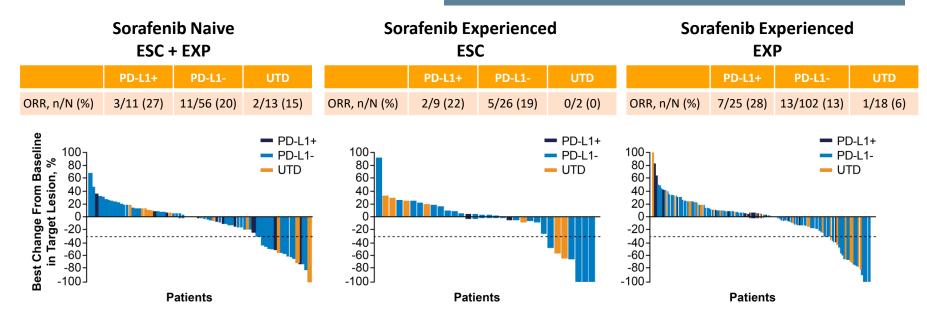
Phase 3: With cabozantinib in first line Phase 3: With bevacizumab in first line

CTLA-4, cytotoxic T-lymphocyte-associated protein 4; HCC, hepatocellular carcinoma; PD-1, programmed death 1; PD-L1, programmed-death ligand 1; TKI, tyrosine-kinase inhibitor

CHECKMATE 040: NIVOLUMAB IN HCC

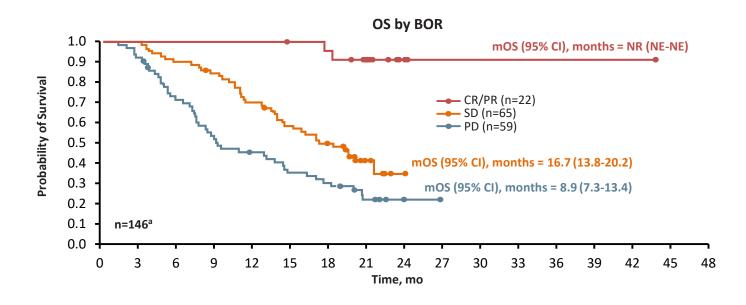
CHECKMATE 040 STUDY: OUTCOMES WITH NIVOLUMAB IN HCC

Investigator assessment using RECIST version 1.1	Uninfected, Untreated, or Intolerant (n=56)	Uninfected Progressor (n=57)	HCV (n=50)	HBV (n=51)	Total (N=214)
ORR, n (%; 95% CI)	13 (23%; 13-26)	12 (21%; 11-34)	10 (20%; 10-34)	7 (14%; 6-26)	42 (20%; 15-26)
CR, n (%)	0	2 (4%)	0	1 (2%)	3 (1%)
PR, n (%)	13 (23%)	10 (18%)	10 (20%)	6 (12%)	39 (18%)
SD, n (%)	29 (52%)	23 (40%)	23 (46%)	21 (41%)	96 (45%)
PD, n (%)	13 (23%)	18 (32%)	14 (28%)	23 (45%)	68 (32%)
NE, n (%)	1 (2%)	4 (7%)	3 (6%)	0	8 (4%)
KM median DOR, months (95% CI)	8.4 (8.3-NE)	NR	9.9 (4.5-9.9)	NR	9.9 (8.3-NE)
Ongoing, n/N (%)	8/13 (62%)	7/12 (58%)	8/10 (80%)	5/7 (71%)	28/42 (67%)
Disease control, n (%; 95% CI)	42 (75%; 62-86)	35 (61%; 48-74)	33 (66%; 51-79)	28 (55%; 40-69)	138 (64%; 58-71)
Disease control with SD for ≥6 mo	22 (39%; 27-53)	22 (39%; 26-52)	17 (34; 21-49)	18 (35%; 22-50)	79 (37%; 30-44)


The ORR by RECIST 1.1 in the post-sorafenib population was 14% (n=145)

NIVOLUMAB CHECKMATE 040 STUDY: RESPONSE AND PD-L1 EXPRESSION

Best Change in Target Lesion From Baseline^a Tumour-Cell PD-L1 Expression


Overall, the ORR by RECIST 1.1 in the post-sorafenib population was 14% (n=145)

^aTumour response assessed by BICR using RECIST v1.1; plots include patients evaluable for tumour response and had ≥1 post-baseline target lesion assessment [sorafenib naive, n=72; sorafenib experienced ESC, n=32; sorafenib experienced EXP, n=135). PD-L1+: ≥1% tumour cells expressing PD-L1; PD-L1-: <1% tumour cells expressing PD-L1.

CHECKMATE 040: OS BY BEST ORR OR CHANGE IN TARGET LESION SIZE

OS Rate, % (95% CI)	CR/PR (n=22)	SD (n=65)	PD (n=59)
12 month	100 (100-100)	67 (55-77)	41 (28-53)
18 month	100 (100-100)	45 (33-57)	26 (15-38)

^aBest overall response was unable to be determined in 8 patients.

CHECKMATE 040 NIVOLUMAB DOSE EXPANSION: TEAEs¹

	Uninfected untreated/ intolerant (n=56)		Uninfected progressor HCV infected (n=57) (n=50)		HBV infected (n=51)		All patients (n=214)			
TRAEs, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
TRAES, II (76)	graue	3/4	graue	3/4	graue	3/4	graue	3/4		3/4
Patients with a TRAE	44 (79)	15 (27)	40 (70)	7 (12)	40 (80)	15 (30)	35 (69)	3 (6)	159 (74)	40 (19)
TRAEs										
(in ≥5% of all patients)										
Rash	6 (11)	1 (2)	10 (18)	1 (2)	9 (18)	0	8 (16)	0	33 (15)	2 (1)
Pruritus	11 (20)	0	7 (12)	0	14 (28)	1 (2)	13 (25)	0	45 (21)	1 (<1)
Diarrhoea	10 (18)	1 (2)	9 (16)	1 (2)	5 (10)	0	3 (6)	1 (2)	27 (13)	3 (1)
Decreased appetite	4 (7)	0	2 (4)	0	2 (4)	1 (2)	3 (6)	0	11 (5)	1 (<1)
Fatigue	14 (25)	1 (2)	20 (35)	1 (2)	8 (16)	1 (2)	7 (14)	0	49 (23)	3 (1)
Nausea	3 (5)	0	7 (12)	0	6 (12)	0	1 (2)	0	17 (8)	0
Dry mouth	4 (7)	0	5 (9)	0	2 (4)	0	2 (4)	0	13 (6)	0
Laboratory TRAEs (in ≥5% of all patients)										
AST increase	6 (11)	2 (4)	3 (5)	2 (4)	6 (12)	5 (10)	1 (2)	0	16 (7)	9 (4)
ALT increase	4 (7)	0	3 (5)	2 (4)	7 (14)	3 (6)	3 (6)	0	17 (8)	5 (2)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; HBV, hepatitis B virus; HCV, hepatitis C virus; TRAE, treatment-related adverse event

CHECKMATE 040: CHILD-PUGH B COHORT

Child-Pugh B7-B8 Cohort

Key eligibility criteria

Advanced HCC
 Sorafenib-naive or treated intolerant or
 progressors

Nivolumab
240 mg flat dose IV for 30
minutes every
2 weeks

Follow-up visit 1 and 2 and survival follow-up Treat until RECIST v.1.1-defined progression or unacceptable toxicity

Median follow-up: 11.8 months (6.4-18.0 months)

Data from CheckMate 040 cohorts 1 and 2, in which almost all patients (98.5%) had Child-Pugh A status, are presented for comparison*

- Primary endpoint: ORR based on investigator assessment using RECIST v1.1
- Secondary endpoints: DCR, DOR, TTR, TTP, PFS, and OS
- Other: BOR and ORR based on BIRC-assessed tumour response by mRECIST, safety using NCI CTCAE v4.0

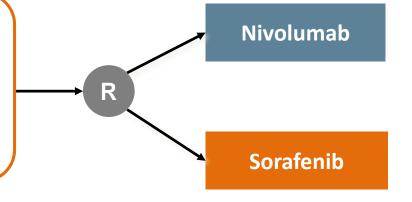
^{*}Direct comparisons between cohorts cannot be made.

CHECKMATE 040: NIVOLUMAB EFFICACY BY CHILD-PUGH STATUS¹

Outcome	Child-Pugh B (n=49)	Child-Pugh A (n=262)		
Outcome	Median	Median		
TTR, months	2.7	2.7		
DOR, months	9.9	12.4		

- TRAEs were reported in 25 (51%) patients; 4 (8.2%) patients had select hepatic TRAEs
- Investigator ORR was 10.2%; DCR was 55.1%
- Median OS = 7.6 months in Child-Pugh B
- NCCN recommendation as second-line therapy for Child-Pugh Class A or B7²

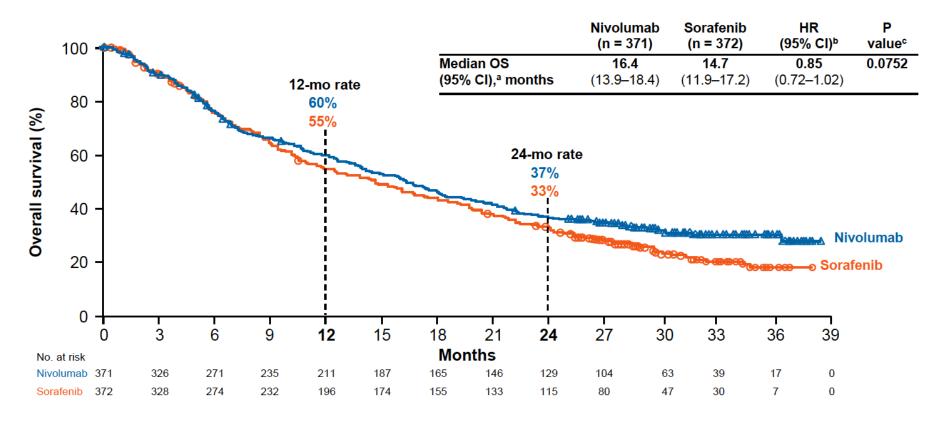
CHECKMATE 459: NIVOLUMAB VERSUS SORAFENIB IN ADVANCED HCC – DID NOT MEET PRIMARY STUDY ENDPOINT



Phase 3

Key eligibility criteria

- Advanced HCC not eligible for or progressive after surgical and/or locoregional treatment
- Child-Pugh A


(N=726)

- Primary endpoint: OS
- Other endpoints: ORR, PFS, and biomarkers

CHECKMATE 459: OVERALL SURVIVAL

 The predefined threshold of statistical significance for OS with nivolumab was not met, although nivolumab demonstrated clinical benefit

KEYNOTE 224 STUDY DESIGN

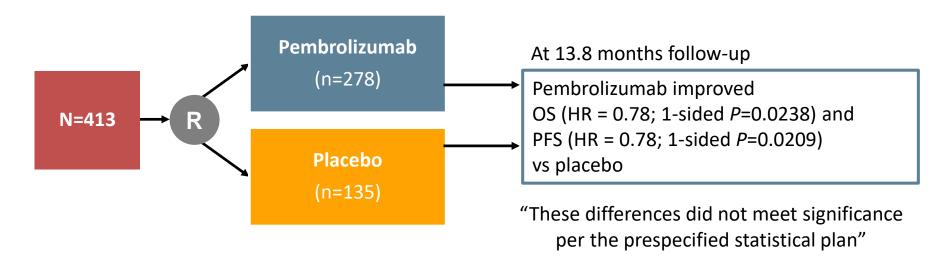
Key eligibility criteria

- ≥18 years
- Pathologically confirmed HCC
- Progression on or intolerance to sorafenib treatment
- Child Pugh class A
- ECOG PS 0-1
- BCLC Stage C or B disease
- Predicted life expectancy >3 months

pembrolizumab 200 mg Q3W for 2 years or until PD, intolerable toxicity, withdrawal of consent or investigator decision Survival follow-up

- Response assessed Q9W
- Primary endpoint: ORR (RECIST v1.1, central review)
- Secondary endpoint: DOR, DCR, PFS, OS, and safety and tolerability

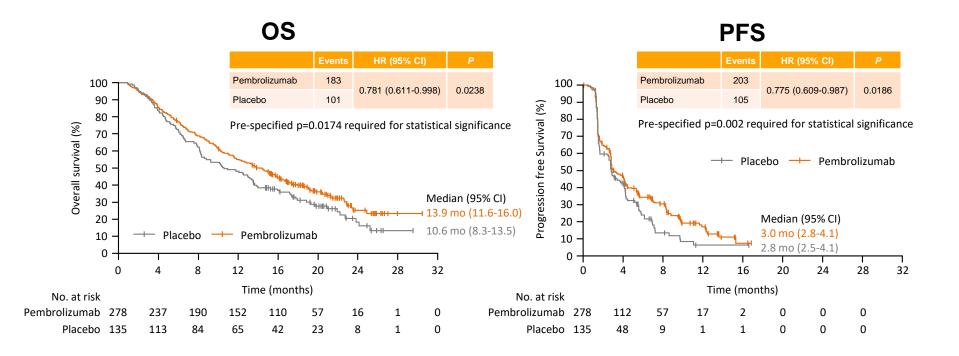
KEYNOTE 224: PHASE 2 STUDY OF PEMBROLIZUMAB IN PREVIOUSLY TREATED HCC¹



- **KEYNOTE 224:** Non-randomised, multicenter, open-label, phase 2 trial assessing PD-1 inhibitor pembrolizumab 200 mg every 3 weeks
- Patients (N=104) with HCC previously treated with sorafenib who were either intolerant to this treatment or showed radiographic progression after treatment^a
- The primary endpoint was objective response

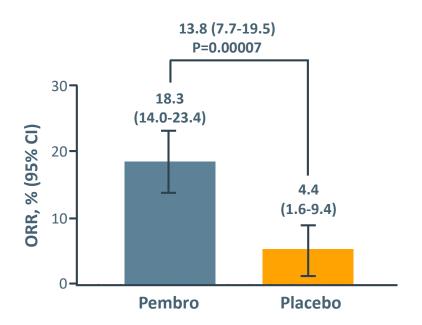
Best Response	Patients (n=104)
Objective response Complete Partial	17% 1% 16%
Stable disease	44%
Progression	33%

KEYNOTE 240: PEMBROLIZUMAB VERSUS BSC AS SECOND-LINE THERAPY DID NOT MEET THE PRIMARY ENDPOINT



Pembrolizumab reduced the risk of death by 22% and improved PFS over placebo but did not meet predefined HR

KEYNOTE 240: OS/PFS UPDATE FROM ASCO 2019



KEYNOTE 240 did not meet the statistical criteria for either of the dual primary endpoints

OBJECTIVE RESPONSE RATE AT FINAL ANALYSIS (RECIST 1.1, BICR)

Response n (%)	Pembrolizumab N=278	Placebo N=135
Best Overall Response		
CR	6 (2.2)	0 (0.0)
PR	45 (16.2)	6 (4.4)
SD	122 (43.9)	66 (48.9)
SD ≥23 wks	37 (18.3)	20 (14.8)
Progressive Disease	90 (32.4)	57 (42.2)
Disease Control Rate (CR+PR+SD)	173 (62.2)	72 (53.3)

Duration of response, median (range)b,c:

- Pembrolizumab: 13.8 mo (1.5+ mo 23.6+ mo)
- Placebo: not reached (2.8 mo-20.4+ mo)

COMBINING CTLA-4 AND PD-1/PD-L1 INHIBITORS IN HCC

CHECKMATE 040: NIVOLUMAB PLUS IPILIMUMAB

- 148 sorafenib-treated patients were randomised
 - 88% had vascular invasion or EHS
 - 91% had BCLC stage C
 - 84% discontinued sorafenib due to disease progression
 - 14% discontinued due to toxicity
- 3 treatment arms

nivolumab 1 mg/kg +
ipilimumab 3 mg/kg every 3
weeks (4 doses) followed by
nivolumab 240 mg every 2 weeks

nivolumab 3 mg/kg +
ipilimumab 1 mg/kg every 3
weeks (4 doses), followed by
nivolumab 240 mg every 2 weeks

nivolumab 3 mg/kg every 2 weeks + ipilimumab 1 mg/kg every 6 weeks

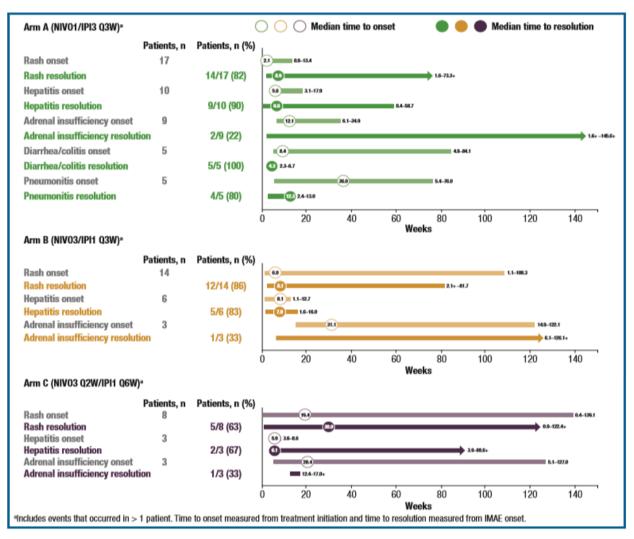
CHECKMATE 040: NIVOLUMAB PLUS IPILIMUMAB (CONT'D)

	nivolumab 1 mg/kg + ipilimumab 3 mg/kg Q3W (n=50)	nivolumab 3 mg/kg + ipilimumab 1 mg/kg Q3W (n=49)	nivolumab 3 mg/kg Every 2 Weeks + ipilimumab 1 mg/kg Q6W (n=49)
ORR, n (%)	16 (32)	15 (31)	15 (31)
CR	4 (8)	3 (6)	0
PR	12 (24)	12 (24)	15 (31)
SD	9 (18)	5 (10)	9 (18)
PD	20 (40)	24 (49)	21 (43)
DCR, % (95% CI)	54 (39-68)	43 (29-58)	49 (34-64)
Median OS, mo (95% CI)	23 (9-NA)	12 (8-15)	13 (7-33)
12-mo OS rate, % (95% CI)	61 (46-73)	56 (41-69)	51 (36-64)
24-mo OS rate, % (95% CI)	48 (34-61)	30 (18-44)	42 (28-56)

37% of patients had a grade 3-4 TRAE Most common: pruritus and rash

Nivolumab plus ipilimumab led to meaningful responses with an ORR twice that of nivolumab monotherapy

SUMMARY OF IMAES



	nivolumab 1 mg/kg + ipilimumab 3 mg/kg Q3W (n=49)		ipilimumab 1	3 mg/kg + . mg/kg Q3W 49)	nivolumab 3 mg/kg Every 2 Weeks + ipilimumab 1 mg/kg Q6W (n=48)	
N (%)	Any Grade	Grade 3–4	Any Grade	Grade 3–4	Any Grade	Grade 3–4
Rash	17 (35)	3 (6)	14 (29)	2 (4)	8 (17)	0
Hepatitis	10 (20)	10 (20)	6 (12)	5 (10)	3 (6)	3 (6)
Adrenal insufficiency	9 (18)	2 (4)	3 (6)	0	3 (6)	0
Diarrhoea/colitis	5 (10)	3 (6)	1 (2)	1 (2)	1 (2)	1 (2)
Pneumonitis*	5 (10)	3 (6)	0	0	0	0
Nephritis/renal dysfunction	0	0	1 (2)	0	1 (2)	1 (2)
Hypersensitivity	0	0	1 (2)	1 (2)	1 (2)	0
Hypophysitis	1 (2)	0	0	0	1 (2)	1 (2)
Hyperthyroidism	0	0	1 (2)	0	1 (2)	0
Hypothyroidism/thyroiditis	0	0	0	0	1 (2)	0
Diabetes mellitus	0	0	0	0	0	0

IMAEs are specific events considered as potential immune-mediated events by investigator occurring <100 days of last dose, regardless of casualty, treated with immune-modulating medication.

TIME TO ONSET AND TIME TO RESOLUTION OF MOST COMMON ANY GRADE IMAES

CHECKMATE 9DW

Phase 3

Key eligibility criteria

- Unresectable HCC not eligible for locoregional therapies
- HCC with histological confirmation
- Child-Pugh A (5 or 6)
- No prior systemic therapy

$$(N=^1,084)$$

- Primary endpoint: OS
- Other endpoints: ORR, DOR, and TTSD

nivolumab 1 mg/kg +
ipilimumab 3 mg/kg every
3 weeks (4 doses) followed
by nivolumab 480 mg every
4 weeks

Standard of care: sorafenib or lenvatinib

PHASE 1/2 STUDY: DURVALUMAB PLUS TREMELIMUMAB

Key eligibility criteria

- Advanced HCC progression on or intolerant of sorafenib
- Adequate liver function
- ECOG PS 0-1
- ≥1 measurable lesion

Safety
run-in and
efficacy
gating

R durvalumab

Arm B

Arm A

tremelimumab

durvalumab +

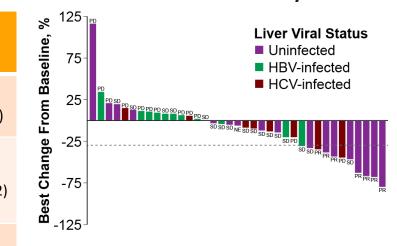
tremelimumab

Arm C

- Primary endpoints: AEs, SAEs, and doselimiting toxicities
- Secondary endpoints: ORR, DOR, OS, PD-L1 expression, TTP, PFS, DCR, and TTR

Each arm to include an equal number of:

- Uninfected patients
- Patients with HBV
- Patients with HCV

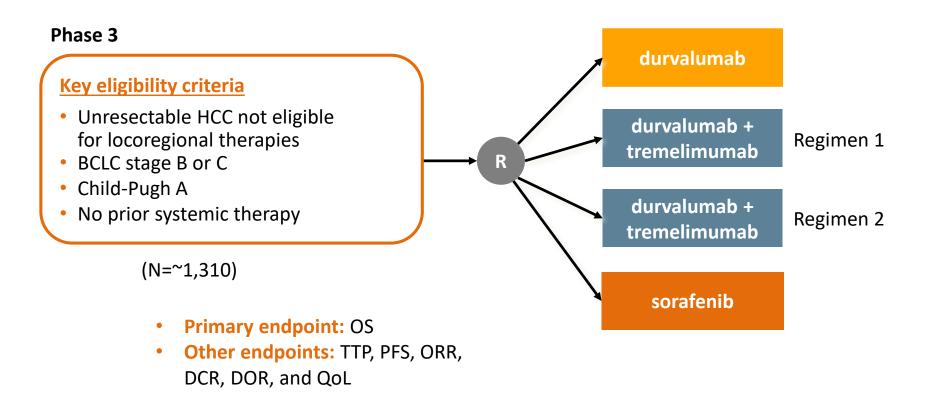

DURVALUMAB PLUS TREMELIMUMAB: EFFICACY AND SAFETY DATA

Investigator-Assessed Response

	HBV+	HCV+	Uninfected	AII
	(n=11)	(n=9)	(n=20)	(N=40)
Confirmed ORR,	0	11.1	30.0	17.5
% (95% CI)	(0.0-28.5)	(0.3-48.2)	(11.9-54.3)	(7.3-32.8)
CR + PR, (confirmed + unconfirmed), % (95% CI)	9.1 (0.2-41.3)	11.1 (0.3-48.2)	40.0 (19.1-63.9)	25.0 (12.7-41.2)
DCR at week 16,	45.5	44.4	70.0	57.5
% (95% CI)	(16.7-76.6)	(13.7-78.8)	(45.7-88.1)	(40.9-73.0)

Antitumour Activity

Most common AEs were fatigue, pruritus, and elevated liver enzymes


DURVALUMAB PLUS TREMELIMUMAB: EFFICACY AND SAFETY DATA (CONT'D)

Preferred Term	HBV+	HCV+	Uninfected	Total (N=40)		
	(n=11)	(n=9)	(n=20)	Any	Grade 3/4	
Pruritus	3 (27.3)	3 (33.3)	3 (15.0)	9 (22.5)	0	
Elevated ALT	3 (27.3)	3 (33.3)	2 (10.0)	8 (20.0)	2 (5.0)	
Elevated AST	3 (27.3)	2 (22.2)	2 (10.0)	7 (17.5)	4 (10.0)	
Elevated lipase	2 (18.2)	1 (11.1)	3 (15.0)	6 (15.0)	4 (10.0)	
Rash	2 (18.2)	1 (11.1)	2 (10.0)	5 (12.5)	0	
Diarrhoea	3 (27.3)	2 (22.2)	0	5 (12.5)	1 (2.5)	
Elevated amylase	2 (18.2)	0	1 (5.0)	3 (7.5)	1 (2.5)	
Colitis	0	2 (22.2)	0	1 (2.5)	1 (2.5)	
Pneumonitis	1 (9.1)	0	0	1 (2.5)	1 (2.5)	
Pancreatitis	0	1 (11.1)	0	1 (2.5)	1 (2.5)	
Hypertransaminasaemia	0	1 (11.1)	0	1 (2.5)	1 (2.5)	

HIMALAYA: DURVALUMAB PLUS TREMELIMUMAB VERSUS SORAFENIB

COMBINING IMMUNE-CHECKPOINT INHIBITORS AND ANGIOGENESIS INHIBITORS IN HCC

RATIONALE BEHIND COMBINING ANGIOGENESIS INHIBITORS AND IMMUNE CHECKPOINT INHIBITORS

Systemic Therapy

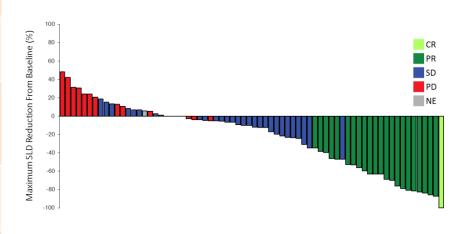
(anti angiogenic, multi targeted)

Immune checkpoint inhibitors

Systemic Therapy

(anti angiogenic, multi targeted) induces:

- Hypoxia
- Treg population
- ↑ PD-L1 expression

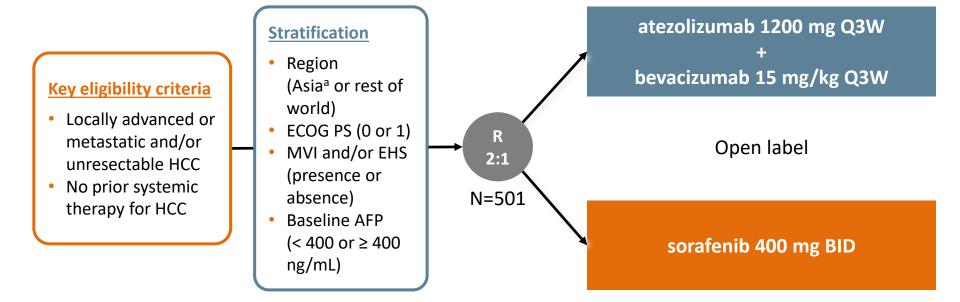

Synergistic Antitumour Response

ATEZOLIZUMAB PLUS BEVACIZUMAB IN ADVANCED HCC: RESPONSE

ORR	
Overall, n (%) ^a CR PR	23/73 (32) 1/73 (1) 22/73 (30)
SD	33/73 (45)
PD	13/73 (18)
By region, n/n (%) ^b Asia excluding Japan Japan/USA	12/41 (29) 10/31 (32)
By etiology, n/n (%) HBV HCV Nonviral	11/36 (31) 10/23 (43) 2/14 (14)
By baseline AFP, n/n (%) ^c <400 ng/mL ≥400 ng/mL	12/41 (29) 11/27 (41)
By EHS/MVI, n/n (%) ^d EHS and/or MVI MVI negative EHS negative Neither EHS nor MVI	18/64 (28) 13/32 (41) 9/22 (41) 5/8 (63)

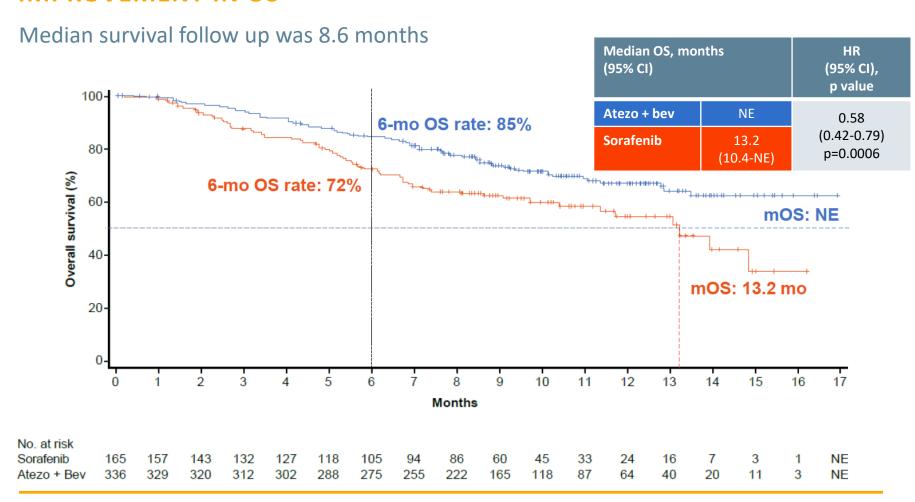
PHASE 1B STUDY

^aFour patients were unevaluable. ^bRegion data from one patient are missing. ^cBaseline AFP data from five patients are missing. ^dEHS and MVI baseline data from two patients are missing.


ATEZOLIZUMAB PLUS BEVACIZUMAB IN ADVANCED HCC: SAFETY

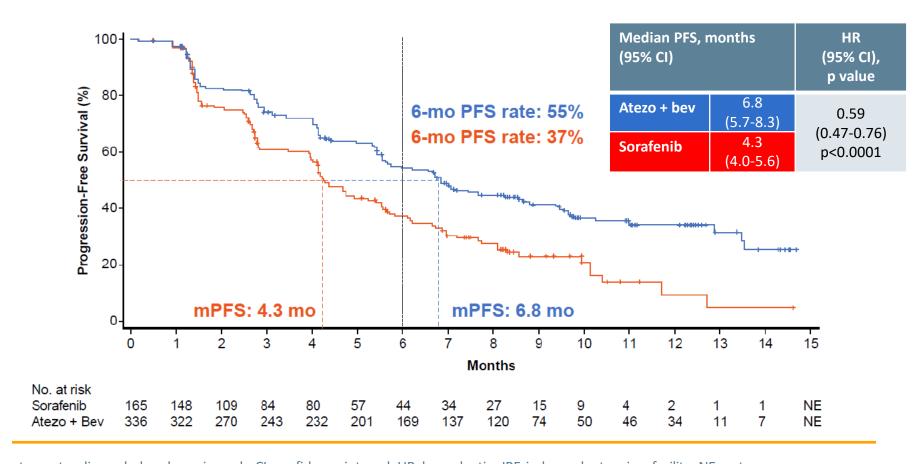
Most common AEs (≥20% of patients); n=103	n (%)
Decreased appetite	29 (28)
Fatigue	21 (20)
Rash	21 (20)
Pyrexia	21 (20)
Grade 3/4 TRAEs (≥5% of patients); n=103	n (%)
Hypertension	10 (10)
Grade ≥3 atezolizumab AESIs requiring	n (%)
systemic corticosteroids	
Pneumonitis	2 (2)
Encephalitis autoimmune	1 (1)
Drug-induced liver injury	1 (1)
Colitis	1 (1)
AST increased	1 (1)
Gamma-glutamyltransferase increased	1 (1)
Diabetes mellitus	1 (1)
Pancreatitis	1 (1)

PHASE 3 IMbrave150 STUDY: ATEZOLIZUMAB + BEVACIZUMAB VS SORAFENIB IN UNTREATED PATIENTS


Primary endpoints: OS and PFS (IRF-assessed per RECIST 1.1)
Patients were treated until loss of clinical benefit or unacceptable toxicity

a excluding Japan

IMbrave150: OS


STATISTICALLY SIGNIFICANT AND CLINICALLY MEANINGFUL IMPROVEMENT IN OS

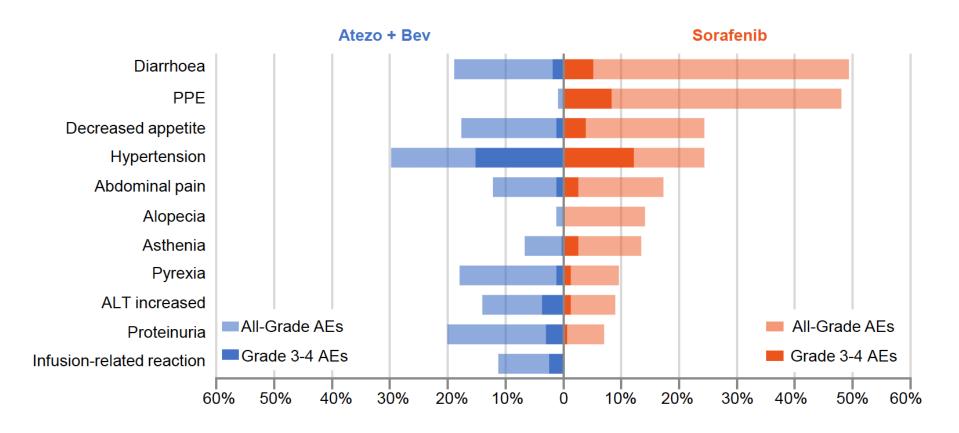
IMbrave150: PFS

STATISTICALLY SIGNIFICANT AND CLINICALLY MEANINGFUL IMPROVEMENT IN IRF-ASSESSED PFS PER RECIST 1.1

IMbrave150: RESPONSE

STATISTICALLY SIGNIFICANT, CLINICALLY MEANINGFUL IMPROVEMENTS IN ORR DURABLE RESPONSE

Response, n (%)	IRF RECIST 1.1		IRF HCC mRECIST	
	Atezo + bev (n = 326)	Sorafenib (n = 159)	Atezo + bev (n = 325) ^b	Sorafenib (n = 158)
Confirmed ORR ^a	89 (27)	19 (12)	108 (33)	21 (13)
CR	18 (6)	0	33 (10)	3 (2)
PR	71 (22)	19 (12)	75 (23)	18 (11)
SD	151 (46)	69 (43)	127 (39)	66 (42)
PD	64 (20)	39 (25)	66 (20)	40 (25)
DCR	240 (74)	88(55)	235 (72)	87 (55)
Ongoing response, n/N (%)	77/89 (87)	13/19 (68)	84/108 (78)	13/21 (62)
Median DoR, months (95% CI)	NE	6.3 (4.7-NE)	NE	6.3 (4.9-NE)


a p<0.0001

^b IRF HCC mRECIST-evaluable population was based on patients who presented with measurable disease at baseline per HCC mRECIST criteria

IMbrave150: SAFETY

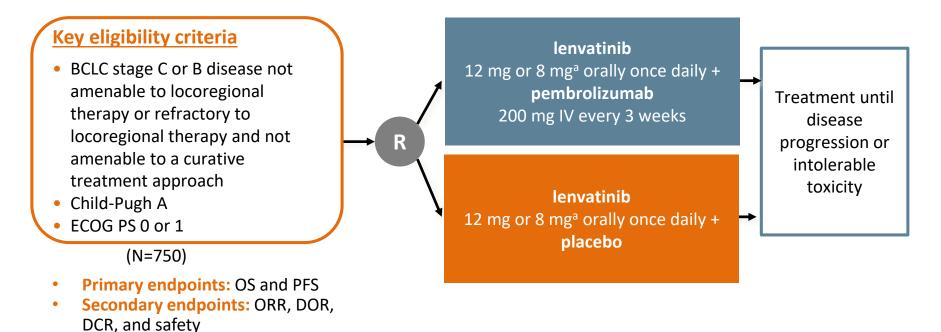
AES OCCURRING IN ≥10% OF PATIENTS IN EITHER ARM AND WITH A >5% DIFFERENCE BETWEEN ARMS

PHASE 1b STUDY: LENVATINIB PLUS PEMBROLIZUMAB IN UNRESECTABLE HCC

Summary of TEAEs: Safety Analysis Set

lenvatinib + pembrolizumab Parameter, n (%) Part 1 (n=6) Part 2 (n=24) Overall (N=30) **TEAEs** 6 (100.0) 24 (100.0) 30 (100.0) 6 (100.0) 22 (91.7) 28 (93.3) Treatment-related TEAEs 13 (54.2) 18 (60.0) TEAEs ≥ grade 3 5 (83.3) Serious AEs 2 (33.3) 6 (25.0) 8 (26.7) Fatal AEsa 0 3 (12.5) 3 (10.0) Dose modifications LEN or PEM dose 5 (83.3) 13 (54.2) 18 (60.0) interruptions due to TEAEs LEN dose reductions due to 5 (83.3) 13 (54.2) 18 (60.0) **TFAEs** Discontinuation of LEN or 0 5 (20.8) 5 (16.7) PEM due to TEAE(s)b

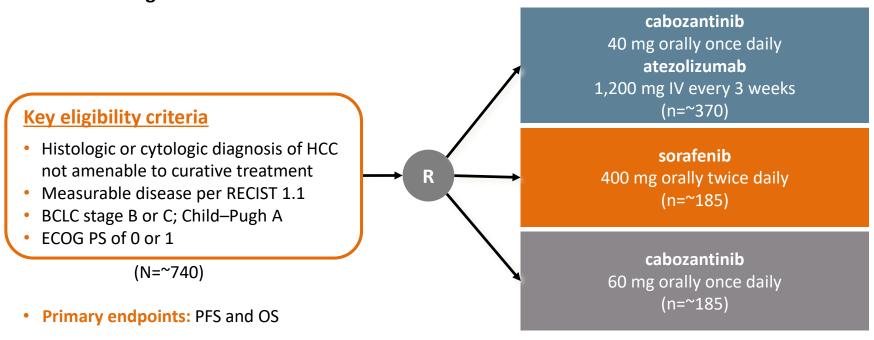
Summary of Tumour Response: Investigator Assessment by mRECIST; Efficacy Analysis Set^c


	lenvatinib + pembrolizumab		
Parameter, n (%)	Part 1 (n=6)	Part 2 (n=24)	Overall (N=30)
BOR			
CR ^d	0	1 (5.0)	1 (3.8)
PR ^e	4 (66.7)	6 (30.0)	10 (38.5)
SD	2 (33.3)	13 (65.0)	15 (57.7)
PD	0	0	0
ORR (incl. unconfirmed responses)	4 (66.7)	7 (35.0)	11 (42.3)
95% CI	22.3-95.7	15.4-59.4	23.4-63.1
ORR (excl. unconfirmed responses)	3 (50.0)	4 (20.0)	7 (26.9)
95% CI	11.8-88.2	5.7-43.7	11.6-47.8

^aAcute respiratory distress syndrome (n=1); intestinal perforation (n=1); bacterial peritonitis (n=1). ^bTwo TEAEs leading to discontinuation (acute respiratory distress syndrome and acute respiratory failure) were reported in the same patient. ^cPatients with post-evaluable tumour assessment. ^dZero CR confirmed. ^eSeven PR confirmed.

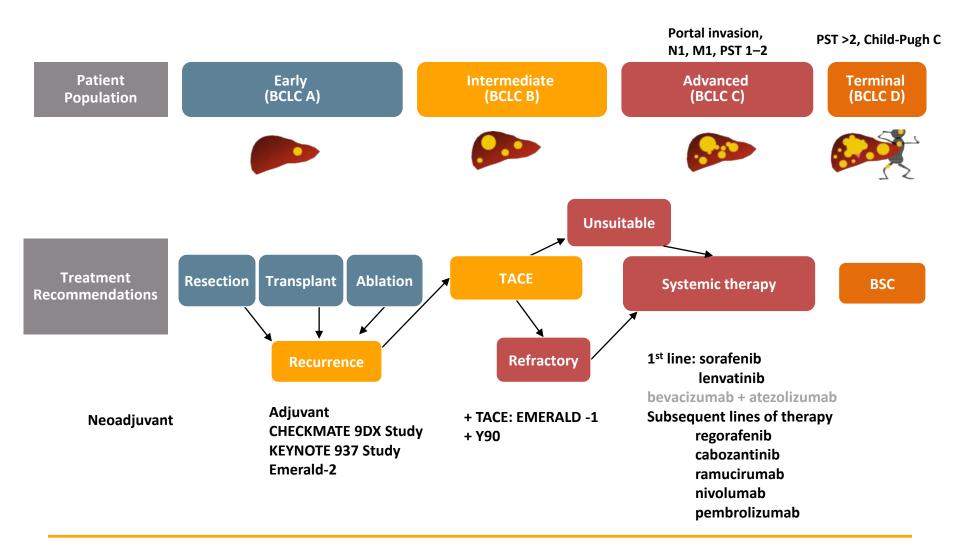
LEAP-002: 1ST-LINE LENVATINIB PLUS PEMBROLIZUMAB VERSUS LENVATINIB PLUS PLACEBO IN ADVANCED HCC

Phase 3



°12 mg (for participants with screening body weight ≥60 kg) or 8 mg (for participants with screening body weight <60 kg).

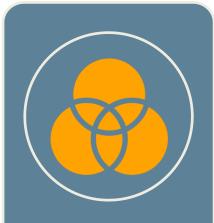
PHASE 3 COSMIC-312 STUDY: CABOZANTINIB ± ATEZOLIZUMAB VS SORAFENIB IN ADVANCED HCC



Study in adults with advanced HCC who have not received prior systemic anticancer therapy in the advanced setting

EXPANDING IO THERAPIES TO EARLIER STAGES OF HCC

CONCLUSIONS



- The systemic therapy for advanced-stage HCC is expanding
 - Seven FDA approved treatments will likely result extended survival in patients who can be exposed to all these treatment options
- The landscape of treatment of HCC is changing with more systemic therapy options

The combination of bevacizumab and atezolizumab showed improved PFS and OS over sorafenib in the phase 3 IMbrave 150 study. This may become a first-line systemic treatment for advanced stage HCC.

A PEEK INTO THE FUTURE OF THE SYSTEMIC TREATMENT OF HCC

Combination therapy may replace singleagent treatment

The optimal treatment sequence over various lines of therapy will be determined

Exposure the one type of therapy could potentially make HCC more sensitive or resistant to another type of therapy given the complex effect of TKIs and IO on the tumour microenvironment

Systemic therapy will be moved to the earlier stages of HCC

To extend the life of HCC patients by improving the efficacy of current therapy (surgery, transplant, RFA, TACE etc.) and preserving liver function

Biomarkers may be discovered to prioritise treatment for HCC patients

MANAGEMENT OF TOXICITIES

TARGETED THERAPY: COMMON AES

Sorafenib¹

Most common (≥20%)

- Diarrhoea
- Fatigue
- Infection
- Alopecia
- Dermatologic AEs (e.g. HFSR, rash)
- Weight loss
- •GI AEs (e.g. decreased appetite, nausea, pains
- Hypertension
- Haemorrhage

Other AEs

- Cardiac AEs
- QT/QTc interval prolongation
- Cases of increased bilirubin/INR

Lenvatinib²

Most common (≥20%)

- Hypertension
- Fatigue
- •GI AEs (diarrhoea nausea, decreased appetite, pain)
- Arthralgia/myalgia
- Decreased weight
- Dermatologic AEs (HFSR)
- Proteinuria
- Dysphonia
- Haemorrhagic AEs
- Hypothyroidism

Other AEs

- Elevated TSH
- •Cardiac AEs
- •QT/QTc interval prolongation
- Hepatotoxicity

Regorafenib³

Most common (≥20%)

- Pain
- Dermatologic AEs (HFSR, rash)
- Asthenia/fatigue
- GI AEs (diarrhoea, decreased appetite, pain, nausea)
- Hypertension
- Infection
- Dysphonia
- Hyperbilirubinemia
- •Fever
- Mucositis
- Weight loss

Other AEs

- Haemorrhage
- Hepatotoxicity
- Cardiac ischemia
- •RPLS

Cabozantinib⁴

Most common (≥25%)

- Diarrhoea
- Fatigue
- GI AEs (decreased appetite, nausea, vomiting
- •Dermatologic AEs (HFSR)
- Hypertension

Other AEs

- VTE
- RPLS
- Proteinuria
- Haemorrhage
- Jaw osteonecrosis

Ramucirumab⁵

Most common (≥15% and ≥2% vs placebo)

- Fatigue
- Peripheral oedema
- Hypertension
- •GI AEs (abdominal pain, decreased appetite, nausea)
- Proteinuria
- Ascites
- Thrombocytopenia
- Hypoalbuminemia
- Hyponatremia

Other AEs

- Gastrointestinal perforation
- Haemorrhage
- RPLS
- VTE

AE, adverse event; GI, gastrointestinal; HFSR, hand-foot skin reaction; INR, international normalized ratio; RPLS, reversible posterior leukoencephalopathy syndrome; TSH, thyroid stimulating hormone; VTE, venous thromboembolism

1. Nexavar Package Insert. 2. Lenvima Package Insert. 3. Stivarga Package Insert. 4. Cabometyx Package Insert. 5. Cyramza Package Insert.

TARGETED THERAPY: AE MANAGEMENT

Hypertension screening and management Managing cardiac risk Wound healing and surgical considerations General guidelines for dose reduction

IMMUNOTHERAPY: COMMON AEs

Nivolumab (CheckMate 040)¹

- 19% of 262 patients experienced grade 3/4 TRAEs
- Serious TRAEs included pemphigoid, adrenal insufficiency, and liver disorders
- No new safety signals were noted

Pembrolizumab (KeyNote 224)²

- 24% of 104 patients experienced grade 3 TRAEs
- Increased AST (7%)
- Increased ALT (4%)
- Fatigue (4%)
- Immune-mediated hepatitis occurred in 3% of patients

Atezolizumab + bevacizumab (IMbrave150)³

- 36% of 329 patients experienced grade 3-4 TRAEs
- Common AEs (>10%) included
 - Hypertension
 - Proteinuria
 - Diarrhoea
 - Decreased appetite
 - Pyrexia
 - ALT increased
 - Abdominal pain
 - Infusion-related reactions

IMMUNOTHERAPY: AE MANAGEMENT

Thyroid function monitoring Monitoring for and managing dermatologic and GI toxicity Monitoring for pneumonitis; knowing when to discontinue therapy Caregiver education Use of steroids, biologics for AE management

IMMUNE-RELATED HEPATOTOXICITY

Kirti Shetty

University of Maryland, Baltimore, USA

IMMUNE-RELATED ADVERSE EVENTS (irAEs)

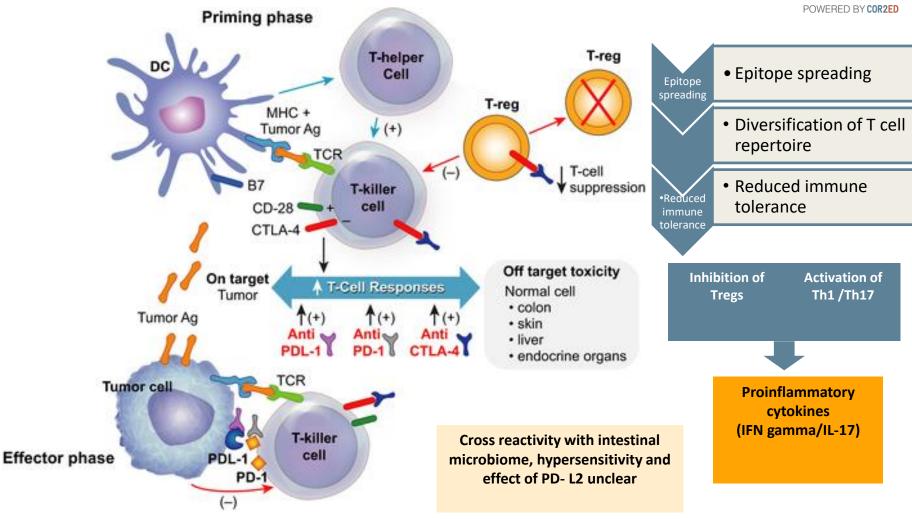
- Discrete toxicities caused by non-specific activation of the immune system
- Can affect almost any organ system
 - Common: skin, gut, endocrine, lung, musculoskeletal
 - Uncommon: haematological, renal, neurological, ophthalmological, cardiovascular

Meta-analysis of 6,938 patients

- Grade 3/4 irAEs are more common with anti-CTLA-4 vs anti-PD1
 - 31% vs 10%
- Colitis, hypophysitis and rash occurred more often with anti-CTLA-4
- Pneumonitis, vitiligo, hypothyroidism, arthralgia were more common with anti-PD-1
- Melanoma patients have a higher frequency of GI and skin AEs and a lower frequency of pneumonitis

INCIDENCE OF irAEs

Incidence


- The reported incidence of irAEs is as high as 90% in some studies
- A meta-analysis indicates:
 - <75% with anti-CTLA-4 monotherapy (ipilimumab)</p>
 - <30% with anti-PD-1/PD-L1 agents
- irAEs are a dose-related phenomenon
- Incidence varies in adjuvant vs metastatic disease settings

Severity

- The majority of irAEs are mild to moderate in severity
- However, in clinical trials treatment-related deaths occur in up to 2% of patients

PATHOGENESIS OF irAEs

RECOGNISING IMMUNE-RELATED HEPATOTOXICITY

Hepatotoxicity ranges from asymptomatic increases in aminotransferases to acute hepatitis Minority of patients have fever Median time to onset: 5 weeks (1-49)

Dose dependent

Median of 2 (1-12) doses

No uniform definition

7% vs 25% with ipilimumab 3 mg vs 10 mg/kg

Increased with combination

ALT increase in 3.8% (monotherapy) vs 17.6% (nivolumab + ipilimumab)

GRADING HEPATOTOXICITY

UTILISE COMMON TERMINOLOGY CRITERIA OF ADVERSE EVENTS (CTCAE) - NCI

Severity based on peak abnormalities of liver biochemistry

• AST / ALT / ALP / GGT

Higher grades of severity – 3 and 4

INR not included

INCIDENCE OF IMMUNE-MEDIATED HEPATOTOXICITY

NON-HEPATIC TUMOURS

French study¹

- 536 patients with non-hepatic tumours treated with anti-PD1/PD-L1 or anti-CTLA-4
 - 3.5% severe hepatitis
 - Outcome universally benign
 - Immunotherapy was reintroduced in 3 patients

Combination of studies / meta-analysis of 17 clinical trials²

Odds ratio	All grade	High grade
CTLA-4 inhibitors	1.24 (0.75-2.05)	1.93 (0.84-4.44)
PD-1 inhibitors	1.52(1.24-1.86)	0.48 (0.29-0.80)

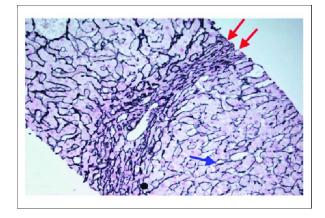
Higher rate of all-grade and high-grade hepatotoxicity with CTLA-4 inhibitors

INCIDENCE OF IMMUNE-MEDIATED HEPATOTOXICITY

HEPATIC TUMOURS

- CheckMate 040 trial (nivolumab)
 - Any grade ALT elevations 7.8%
 - Grade 3-4 elevations 2.6%
- Overall incidence of severe immune-mediated hepatotoxicity
 - Nivolumab: 4% of 154 exposed patients
 - Pembrolizumab: 3% of 104 exposed patients
 - Tremelimumab: 10% of 32 patients

RARE LIVER-RELATED AES



NODULAR REGENERATIVE HYPERPLASIA¹ Case Report

- 35-year old male with no history of liver disease, treated for melanoma
- Anasarca / ascites 3 weeks after pembrolizumab initiated
- Transjugular liver biopsy: portosystemic

gradient of 7

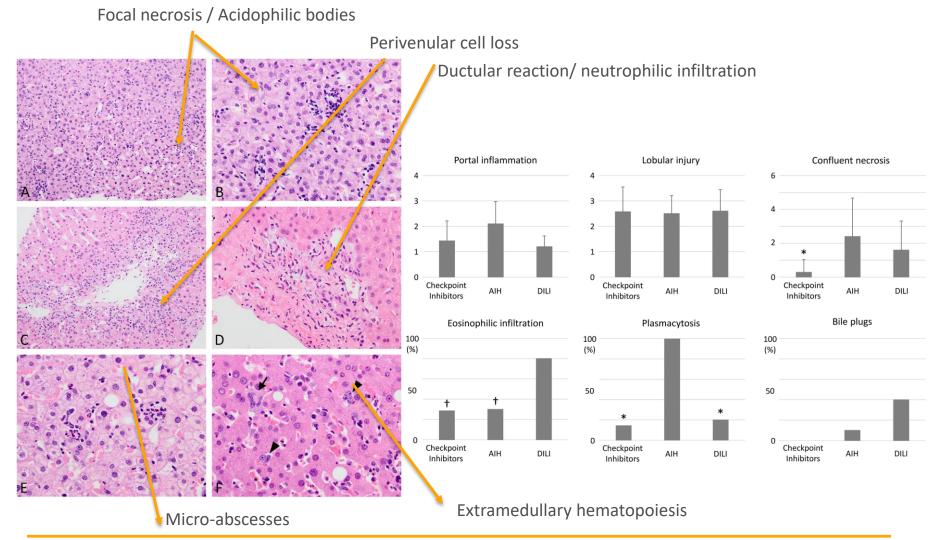
- Liver biopsy: NRH
- Treatment: drug withdrawal, TIPS

ACUTE LIVER FAILURE^{2,3}

- Reported with ipilimumab / nivolumab
- Treatment response reported with ATG and plasma exchange

MANAGEMENT

Before therapy


- Assess baseline hepatic synthetic function
- Check for potential pre-existing liver disease, metastatic disease and viral infections
- Rule out underlying autoimmune hepatitis

During therapy

- Monitor liver associated enzymes
 - Every 2 weeks for the first 8 12 weeks
 - Then every 4 weeks

ROLE OF LIVER BIOPSY

ROLE OF LIVER BIOPSY

Histologic pattern of hepatitis differs according to drug used

CTLA4 inhibitors

 Granulomatous hepatitis / central vein endotheliitis

PD1 inhibitors

Lobular hepatitis

MANAGEMENT OF HEPATOTOXICITY

CTCAE GRADE OF SEVERITY	GENERAL RECOMMENDATIONS
 Grade 2 AST > 3 – 5 ULN and/or ALT > 3 – 5 ULN Bilirubin > 1.5 – 3 ULN 	 Corticosteroids 0.5- 1 mg /kg prednisone Withhold immune-checkpoint inhibitor Monitor labs every 3 days Work up for alternate causes of liver disease
 Grade 3 / 4 AST/ ALT > 5 ULN or Total bilirubin > 3 times ULN 	 Corticosteroids 0.5- 1 mg /kg prednisone Add mycophenolate mofetil if no response Hospital admission Permanent discontinuation of immune-checkpoint inhibitor

SUMMARY

- irAEs are commonly encountered with immune-checkpoint inhibitors
 - Majority of cases mild and self-limited
 - The incidence of irAEs is determined by the agent, dose and tumour microenvironment

- Hepatotoxicity rates are similar in hepatic and non hepatic cancer
 - Important to exclude other causes of liver disease
- Steroids and immunomodulatory agents are of benefit
- Further studies required to define pathophysiology of hepatotoxicity and develop evidence-based therapies

THE FUTURE ROLE OF TISSUE-BASED BIOMARKERS IN HCC

David Kleiner

National Cancer Institute, Bethesda, USA

BIOMARKERS

Diagnostic

- Is it hepatocellular? HepPar, Arginase, pCEA, CD10
- Is it malignant? CD34, HSP70, Glypican-3, Glut synthase

Prognostic

- Histological subtype and grade
- Molecular subtype

Theragnostic

- Potential for molecular or immune markers
- NGS panels (>100 genes) currently available in most academic labs
- Whole exome, RNA sequencing, Methylation arrays available in some labs with research applications

LIVER BIOPSY

Adequacy

- 1.5 cm, 16 gauge
- Diagnosis can be made on minimal tissue

Risks

- Bleeding¹
 - Mild: 3-4%
 - Severe: 0.5%
- Tumour seeding (<3%)²
 - Seeding has no appreciable impact on survival

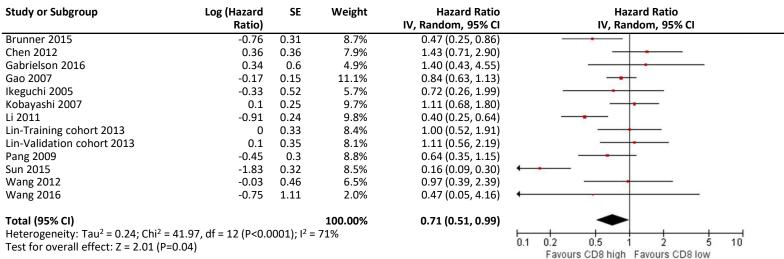
Guidelines

- AASLD: neutral on biopsy if imaging adequate³
- EASL: concern over complications should not justify abstaining from biopsy⁴
- EASL: biopsy should be performed in clinical trials⁵

Biopsy should be performed:

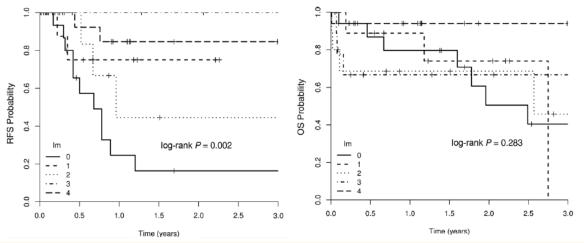
- Lesions <1.0 cm (biopsy sensitivity >80%)⁶
- Lesions with ambiguous Li-Rads scores
- Lesions in noncirrhotic livers

PERSONALISED MEDICINE FOR PATIENTS WITH HCC

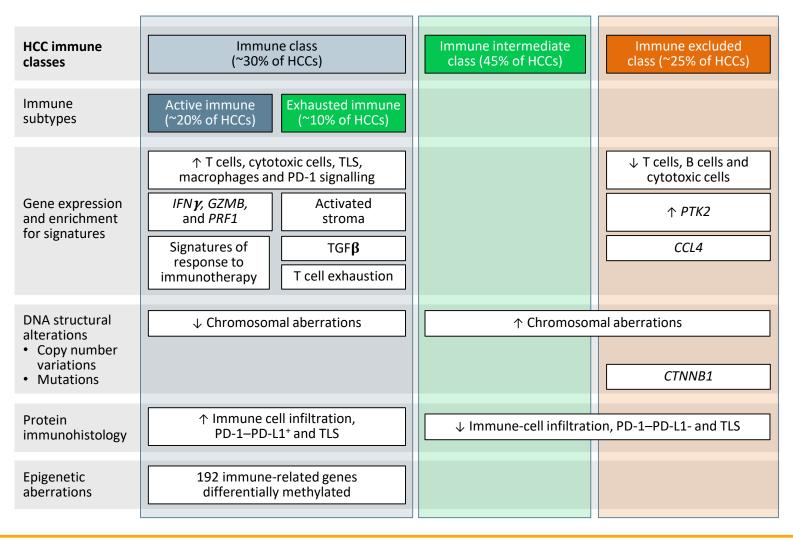


- Current approved therapies for HCC:
 - TKI's: sorafenib, lenvatinib, regorafenib, cabozantinib
 - Checkpoint inhibitors: nivolumab, pembrolizumab
 - VEGFR2 inhibitor: ramucirumab
- No approved therapies for specific molecular targets for HCC
- No confirmed molecular biomarkers to identify subgroups likely to respond (or not respond) to standard therapies
 - MSI testing, PD-1/PD-L1 IHC not predictive for checkpoint inhibition
- Liver biopsy opens the door to IHC-based and molecular diagnostics
 - Current methodology permits evaluation of all currently druggable mutationbased targets from a FFPE biopsy¹

IMMUNOLOGICAL EVALUATION


CD8(+) TIL ARE ASSOCIATED WITH OS IN HCC1

IMMUNOSCORE IS ASSOCIATED WITH RECURRENCE-FREE SURVIVAL

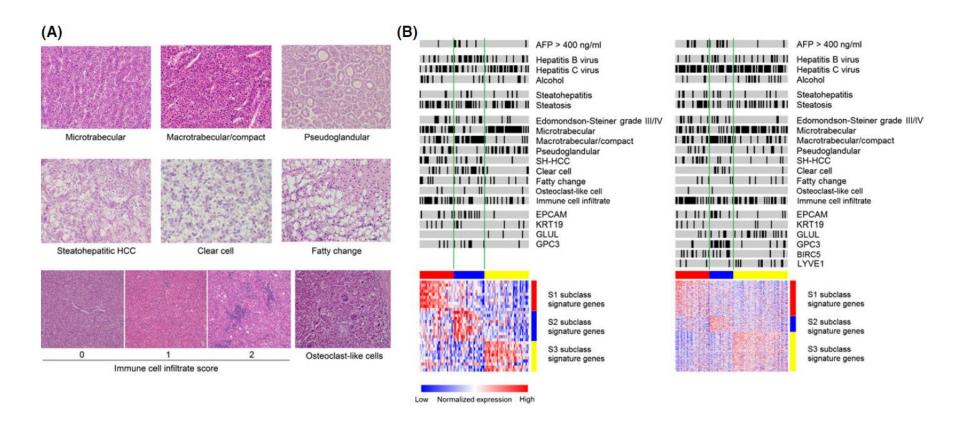

BUT NOT OS IN HCC²

Cl, confidence interval; HCC, hepatocellular carcinoma; OS, overall survival; RFS, recurrence-free survival; SE, standard error; TIL, tumour infiltrating lymphocytes

MICROENVIRONMENT IMMUNE-BASED CLASSIFICATION OF HCC

MOLECULAR GENETIC LANDSCAPE

INTEGRATIVE TRANSCRIPTOME ANALYSIS REVEALS COMMON MOLECULAR SUBCLASSES OF HUMAN HCC



Analysis using gene expression data on ~600 cases of HCC, defined three broad classes of HCC

CLINICOPATHOLOGICAL INDICES TO PREDICT HCC MOLECULAR CLASSIFICATION

TUMOUR-RELATED CLINICOPATHOLOGICAL FEATURES ASSOCIATED WITH HCC MOLECULAR SUBCLASSES*

Variable	Unvariable analysis	Multivariable analysis			
Variable	No. of HCC tumours (%)	OR (95% CI)	P value	OR (95% CI)	P value
S1 subclass	S1: n=30 / Rest: n=66				
SH-HCC	11 (37%) / 8 (12%)	4.20 (1.47-11.97)	0.007	4.25 (1.44-13.20)	0.01
Immune cell infiltrate ≥2	18 (60%) / 21 (32%)	3.21 (1.31-7.87)	0.01	3.25 (1.29-8.53)	0.01
S2 subclass	S2: n=27 / Rest: n=69				
Microtrabecular	4 (15%) / 49 (71%)	0.07 (0.02-0.23)	< 0.001		
Macrotrabecular/compact	22 (81%) / 16 (23%)	14.58 (4.75-44.69)	< 0.001	11.99 (3.48–41.24)	<0.001
Pseudoglandular	2 (7%) / 29 (42%)	0.11 (0.02-0.50)	0.004	0.22 (0.04-1.16)	0.07
Clear cell	14 (52%) / 9 (13%)	7.18 (2.56–20.11)	< 0.001		
Serum AFP >400 ng/ml	6 (22%) / 2 (3%)	9.57 (1.80-51.03)	0.008	10.81 (1.27–91.63)	0.03
S3 subclass	S3: n=39 / Rest: n=57				
Microtrabecular	32 (82%) / 21 (37%)	7.84 (2.94–20.86)	< 0.001	3.94 (1.23–12.56)	0.02
Macrotrabecular/compact	6 (15%) / 32 (56%)	0.14 (0.05-0.39)	< 0.001		
Pseudoglandular	19 (49%) / 11 (19%)	3.56 (1.46-8.71)	0.005		
SH-HCC	1 (3%) / 18 (32%)	0.06 (0.01-0.45)	0.006	0.05 (0.01-0.44)	0.007
Clear cell	3 (8%) / 20 (35%)	0.15 (0.04-0.56)	0.005	0.20 (0.05-0.91)	0.04
Edmondson-Steiner I or II	36 (92%) / 42 (74%)	4.29 (1.15-16.00)	0.03	3.08 (0.65-14.58)	0.16

- S1 class associated with SH-HCC, immune cell infiltration
- S2 class associated with macrotrabecular/compact morphology, enriched for the oncogene YAP and stemness markers (EPCAM, KRT19)

^{*} in the training set (logistic regression)

AFP, alpha-fetoprotein; CI, confidence interval; HCC, hepatocellular carcinoma; OR, odds ratio; SH-HCC, steatohepatitic HCC

COMPREHENSIVE AND INTEGRATIVE GENOMIC CHARACTERIZATION OF HCC

THE CANCER GENOME ATLAS RESEARCH NETWORK

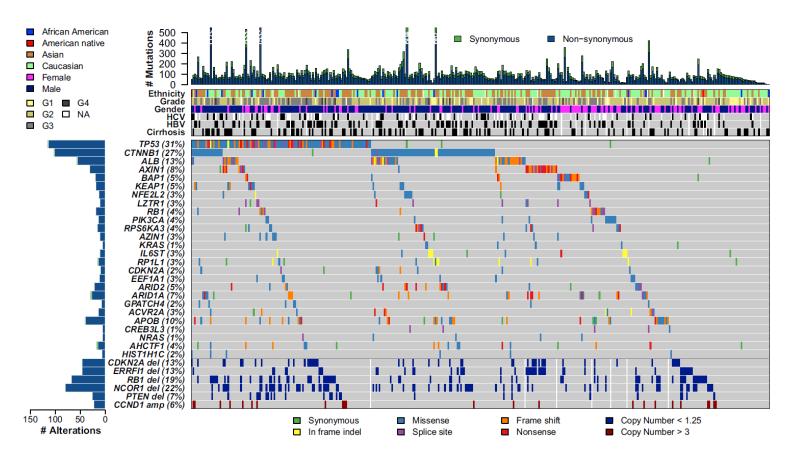
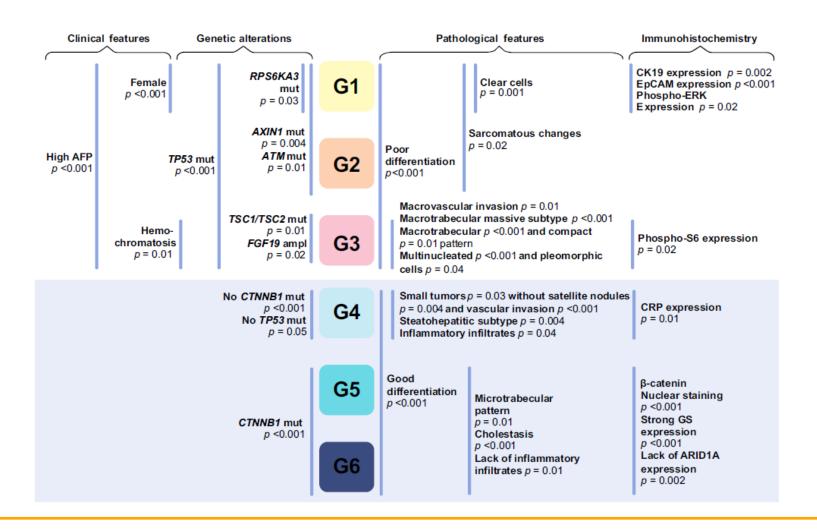
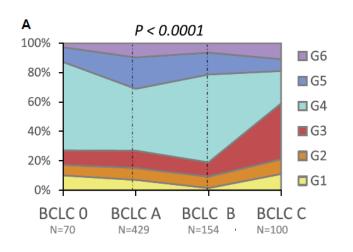
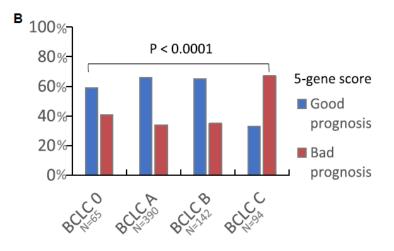


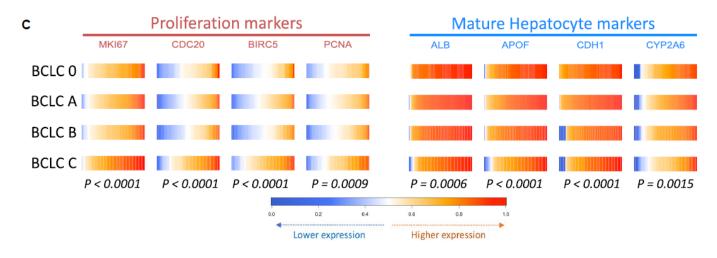
Figure 1. The Genomic Landscape of Liver Hepatocellular Carcinoma and Mutational Signatures


RECURRENT GENE MUTATIONS IN HCC

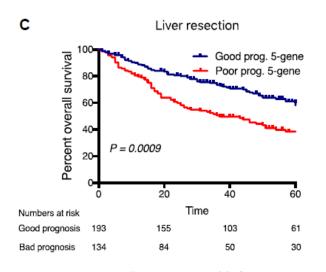
	Frequency of Mutation (%)		ion (%)		
Driver gene	HBV	HCV	Non-viral	Pathways/Role	
TP53	10-65	24	16	DNA repair and surveillance, high risk with aflatoxin B1	
CTNNB1	15	30	39	WNT/β-catenin signaling pathway	
AXIN1	12	13	6	wivi/p-cateriiii sigilaiiiig patriway	
ARID1A	12	2	16		
ARID1B	0	4	2	Chromatin remodeling	
ARID2	4	4	7		
NFE2L2	0	9	6	Oxidative stress	
KEAP1	4	7	6	Oxidative stress	
RPS6KA3	4	9	6	Oncogenic MAPK signalling	
KMT2A (MLL)	0	4	2		
KMT2C (MLL3)	8	0	3	Histone modification	
KMT2D (MLL4)	4	4	2		
CDKN2A	0	4	2	DNA ropair and surveillance	
RB1	8	4	2	DNA repair and surveillance	
TERT promoter	50	61	65	Most common mutation in HCC	
HBV integration	65-100	N/A	N/A		
FGF19 amplification		5-10		Bile acid synthesis, hepatocyte prolif through FGFR4	

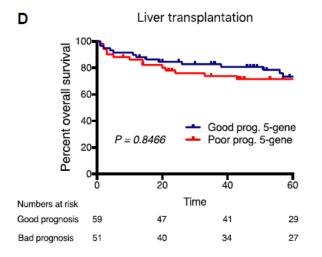

HISTOLOGICAL SUBTYPES OF HCC ARE RELATED TO GENE MUTATIONS AND MOLECULAR TUMOUR CLASSIFICATION

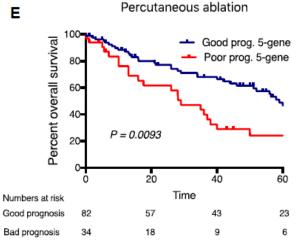


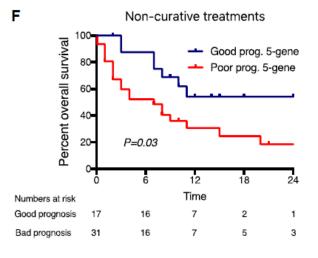


TRANSCRIPTOMIC CLASSIFICATION ACCORDING TO TUMOUR STAGE






5-GENE PANEL PROVIDES PROGNOSTIC INFORMATION^{1,2}



ONGOING TRIALS OF TARGETED THERAPIES FOR HCC

	Drug	Targets	Clinical stage and treatment setting	Enrichment biomarker	Study phase (comparator)	Primary endpoint	ClinicalTrials. gov reference			
	Cell cycle inhibitors and anti-proliferative agents									
	Donafenib	RAF	Advanced; first line	None	3 (sorafenib)	OS	NCT02645981			
*	Palbociclib	CDK4 and CDK6	Advanced; second line	RB ⁺	2	TTP	NCT01356628			
	Milciclib	CDKs	Advanced; second line	None	2	AEs	NCT03109886			
*	Ribociclib	CDK4 and CDK6	Intermediate (plus TACE)	RB ⁺	2	PFS	NCT02524119			
	Chiauranib	AURKB, VEGFRs, KIT, and PDGFRs	Advanced; second line	None	1	PFS	NCT03245190			
*	Capmatinib	MET	Advanced; second line	MET ⁺	2	TTP	NCT01737827			
*	MSC2156119J	MET	Advanced; second line	MET ⁺	1-2	DLTs	NCT02115373			
	Galunisertib	TGF β R1	Advanced; first line (plus sorafenib)	None	2	OS	NCT02178358			
*	BLU-554	FGFR4	Advanced; second line	FGF19+ (by IHC)	1-2	MTD	NCT02508467			
*	INCB062079	FGFR4	Advanced; second line	FGF19 amplification	1-2	AEs	NCT03144661			
	H3B-6527	FGFR4	Advanced; second line	None	1	DLTs	NCT02834780			
*	Erdafitinib	FGFRs	Advanced; second line	FGF19 amplification	1	RP2D	NCT02421185			
	Sapanisertib	mTOR	Advanced; first line	None	1-2	MTD	NCT02575339			
	SF1126	PI3K and mTOR	Advanced; second line	None	1	MTD	NCT03059147			

AE, adverse event; AURKB, aurora Kinase B CDK, cyclin-dependent kinase; DLT, dose-limiting toxicity; FGF, fibroblast growth factor; FGFR4, fibroblast growth factor receptor 4 HCC, hepatocellular carcinoma; IHC, immunohistochemistry; MTD, maximum tolerated dose; mTOR, mammalian target of rapamycin; OS, overall survival; PDGFR, platelet-derived growth factor receptor; PFS, progression-free survival; PI3K, phosphoinositide 3-kinases; RP2D, recommended phase 2 dose; TGF β R1, transforming growth factor beta receptor 1; TTP, time to progression; VEGFR, vascular endothelial growth factor receptor Adapted from Llovet JM, et al. Nat Rev Clin Oncol 2018;15:599-616.

SUMMARY

- Although targeted therapies are used for HCC, biomarkers are not used to select patients or decide on therapeutic options
- Clinical trials are underway to evaluate therapy directed at particular driver mutations
- A wealth of molecular data is available from tumour biopsies
- Biopsies should be performed at least in clinical trials to evaluate tissue biomarkers for prognostic and theragnostic information

Reach HCC CONNECT via TWITTER, LINKEDIN, VIMEO & EMAIL or

visit the group's website http://www.hccconnect.info

Follow us on Twitter **@hccconnectinfo**

Follow the

HCC CONNECT

group on LinkedIn

Watch us on the Vimeo Channel **HCC CONNECT**

Email froukje.sosef@cor2ed.com

HCC CONNECT Bodenackerstrasse 17 4103 Bottmingen **SWITZERLAND**

Dr. Antoine Lacombe

Pharm D, MBA

Phone: +41 79 529 42 79

antoine.lacombe@cor2ed.com

Dr. Froukje Sosef

MD

Phone: +31 6 2324 3636

froukje.sosef@cor2ed.com

