

POWERED BY COR2ED

PUBLICATION SNAPSHOT #3

Prof. Ezra Cohen, MD, FRCPSC, FASCO UC San Diego Health – Moores Cancer Center La Jolla, California, USA

DISCLAIMER

Please note:

Views expressed within this presentation are the personal opinions of the author. They do not necessarily represent the views of the author's academic institution or the rest of NTRK Connect group.

This content is supported by an Independent Educational Grant from Bayer.

Disclosures:

Prof. Ezra Cohen has received honoraria from the following: ALX Oncology, Ascendis, Bayer, Bioline Rx, BMS, Debio, Dynavax, MSD, Merck, Regeneron and Sanofi.

CHARACTERISATION OF ON-TARGET ADVERSE EVENTS CAUSED BY TRK INHIBITOR THERAPY

Liu D, et al. Ann Oncol. 2020;31:1207-15

BACKGROUND: POOLED ANALYSIS OF AEs WITH LAROTRECTINIB

Data cutoff:

19 February 2019

Adult in Phase 1 Advanced solid tumours NCT02122913 N=12

Paediatric in Phase 1/2 Advanced solid tumours SCOUT: NCT02637687 N=50

Adult/adolescent in Phase 2 Advanced solid tumours NAVIGATE: NCT02576431 N=97

	Adverse event	s, regardless o	f attribution*	Treatment-related	l adverse events*
	Grade 1-2	Grade 3	Grade 4	Grade 3	Grade 4
atigue	79 (30%)	6 (2%)	0	1 (<1%)	0
lanine aminotransferase increased	64 (25%)	7 (3%)	2 (<1%)	7 (3%)	1 (<1%)
Cough	71 (27%)	1 (<1%)	0	0	0
Constipation	69 (27%)	1 (<1%)	0	0	0
naemia	44 (17%)	25 (10%)	0	6 (2%)	0
spartate aminotransferase	62 (24%)	6 (2%)	1 (<1%)	2 (<1%)	0
Dizziness	64 (25%)	2 (<1%)	0	1 (<1%)	0
lausea	62 (24%)	2 (<1%)	0	2 (<1%)	0
'omiting	62 (24%)	2 (<1%)	0	0	0
Jiarrhoea	59 (23%)	3 (1%)	0	0	0
yrexia	50 (19%)	2 (<1%)	1 (<1%)	0	0
yspnoea	35 (13%)	6 (2%)	0	0	0
Лyalgia	38 (15%)	3 (1%)	0	2 (<1%)	0
eripheral oedema	40 (15%)	1 (<1%)	0	0	0
leadache	38 (15%)	1 (<1%)	0	1 (<1%)	0
leutrophil count decreased	18 (7%)	12 (5%)	2 (<1%)	4 (2%)	1 (<1%)
ymphocyte count decreased	22 (8%)	7 (3%)	2 (<1%)	2 (<1%)	0
lypokalaemia	12 (5%)	8 (3%)	1 (<1%)	0	0
lypophosphatemia	5 (2%)	9 (3%)	0	0	0

AEs, adverse events

Hong DS, et al. Lancet Oncol 2020;21:531-40. *Data are n (%). n=260. The adverse events listed here are those that occurred at any grade in at least 15% of patients, or at grade 3 or worse in at least 3% of patients, regardless of attribution. Refer to NTRK CONNECT for full publication details:

https://ntrkconnect.info/ntrk-connect-key-publication-snapshot-1-larotrectinib-and-entrectinib-efficacy-and-safety-profile-in-solid-tumours/

BACKGROUND: INTEGRATED SAFETY DATA FOR ENTRECTINIB

Data cutoff:

31 May 2018

ALKA-372-001: Phase 1			
Solid tumours			
EudraCT 2012-000148-88			
N=1			

STARTRK-1: Phase 1/2 Solid tumours NCT02097810 N=2

STARTRK-2: Phase 2 Solid tumours NCT02568267 N=51

Treatment-related adverse events (n=68)*	Grade 1–2	Grade 3	Grade 4
Dysgeusia	32 (47%)	0	0
Constipation	19 (28%)	0	0
Fatigue	19 (28%)	5 (7%)	0
Diarrhoea	18 (27%)	1 (2%)	0
Oedema peripheral	16 (24%)	1 (2%)	0
Dizziness	16 (24%)	1 (2%)	0
Blood creatinine increased	12 (18%)	1 (2%)	0
Paraesthesia	11 (16%)	0	0
Nausea	10 (15%)	0	0
Vomiting	9 (13%)	0	0
Arthralgia	8 (12%)	0	0
Myalgia	8 (12%)	0	0
Weight increased	8 (12%)	7 (10%)	0
AST increased	7 (10%)	0	1 (2%)
ALT increased	6 (9%)	0	1 (2%)
Muscular weakness	6 (9%)	1 (2%)	0
Anaemia	5 (7%)	8 (12%)	0
Asthenia	5 (7%)	0	0
Peripheral sensory neuropathy	4 (6%)	1 (2%)	0
Neutrophil count decreased	4 (6%)	0	0
Rash	4 (6%)	0	0

Treatment-related adverse events (n=68)*	Grade 1–2	Grade 3	Grade 4
Disturbance in attention	3 (4%)	0	0
Pain of skin	3 (4%)	0	0
Neutropenia	3 (4%)	2 (3%)	0
Localised oedema	2 (3%)	1 (2%)	0
Hyperaesthesia	2 (3%)	0	0
Ataxia	2 (3%)	0	0
Platelet count decreased	2 (3%)	0	0
Hyperuricaemia	2 (3%)	0	2 (3%)
Hypophosphatemia	2 (3%)	2 (3%)	0
Dehydration	2 (3%)	0	0
Diplopia	1 (2%)	1 (2%)	0
Hypotension	1 (2%)	1 (2%)	0
Pyrexia	1 (2%)	0	0
Lymphocyte count decreased	1 (2%)	0	0
Pruritus	1 (2%)	0	0
Нурохіа	1 (2%)	0	0
Fall	1 (2%)	0	0
Osteoarthritis	0	1 (2%)	0
Blood uric acid increased	0	0	1 (2%)
Hypermagnesemia	0	1 (2%)	0
Cardiac failure	0	1 (2%)	0
Cardiac failure congestive	0	1 (2%)	0

AEs, adverse events; ALT, alanine aminotransferase; AST, aspartate aminotransferase

Doebele RC, et al. Lancet Oncol 2020;21:271-82 *Data are n (%). n=68. The treatment-related adverse events listed here are those that occurred in the NTRK fusion-

positive safety-evaluable population. Refer to NTRK CONNECT for full publication details: Refer to NTRK CONNECT for full publication details:

https://ntrkconnect.info/ntrk-connect-key-publication-snapshot-1-larotrectinib-and-entrectinib-efficacy-and-safety-profile-in-solid-tumours/

BACKGROUND: LIST OF TRK INHIBITORS AND CURRENT DEVELOPMENT STAGE

7

TRK inhibitors	Targets	Development status in <i>NTRK</i> -positive population ¹
larotrectinib, LOXO-101	NTRK1/2/3	Approved*
entrectinib, RXDX-101	NTRK1/2/3 ; ALK; ROS1	Approved**
selitrectinib, LOXO-195,	NTRK1/3 (resistant)	Phase I/II, recruiting
repotrectinib, TPX-0005	NTRK1/2/3, ALK, ROS1 (resistant) JAK2, SRC, DDR1, FAK	Phase I/II, recruiting
belizatinib, TSR-011	NTRK1/2/3, ALK	Phase I/IIa, completed
merestinib, LYS2801653	NTRK1/2/3 , MET, MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2; MKNK1/2	Phase II, active, not recruiting
sitravatinib, MGCD516	NTRK1/2/3, MET, KIT, PDGFRA, KDR, DDR2, RET, CBL	Phase I/II, active, not recruiting
DS-6051b, AB-106	NTRK1/2/3, ROS1	Phase I/II, active, not yet recruiting
altiratinib, DCC2701	NTRK1/2/3, MET, MET mutant	Phase I, terminated
PLX7486	NTRK1/2/3 , CSF1R	Phase I, terminated
PF-06273340	NTRK1/2/3	Phase I, completed
CH7057288	NTRK1/2/3	No studies found
GNF-5837	NTRK1/2/3	No studies found

AEs, adverse events; ALK, anaplastic lymphoma kinase; CBL, casitas B-lineage lymphoma; CSF1R, colony stimulating factor 1 receptor; DDR1/2, discoidin domain receptor tyrosine kinase 1/2; FAK, focal adhesion kinase; FLT3, FMS-like tyrosine kinase 3; JAK2, Janus kinase 2; KDR, kinase insert domain receptor; MKNK1/2, MAP kinase-interacting serine/threonine-protein kinase 1/2; MST1R, macrophage stimulating 1 receptor; NTRK, neurotrophic tyrosine receptor kinase; PDGFRA, platelet-derived growth factor receptor alpha; RET, rearranged during transfection; *ROS1*, c-ros oncogene 1; TRK, tropomyosin receptor kinase *Larotrectinib is approved in the US, Canada, Brazil, European Union, Hong-Kong, Saudi Arabia, South Korea and Israel **Entrectinib is approved in the US, European Union and Japan 1. Source : ClinicalTrial.gov website visited on 27 August 2020

Based on the identified TRK inhibitors related AEs in prospective trials, the objectives of the paper are:

1. To characterise these AEs

2. To define a management strategy for these AEs

AEs, adverse events; TRK, tropomyosin receptor kinase

DEFINITION & RETROSPECTIVE STUDY DESIGN

- NTRK connect® POWERED BY COR2ED
- On-target refers to exaggerated and adverse pharmacologic effects at the target of interest in the test system¹.
- Off-target refers to adverse effects as a result of modulation of other targets; these may be related biologically or totally unrelated to the target of interest¹.

Eligibility criteria

- Treated in the Early Drug Development Service of Memorial Sloan Kettering Cancer Center between January 1st 2013→ April 1st 2019
- Pathologic evidence of a solid tumour
- Advanced or unresectable disease
- treated with at least one dose of a tyrosine kinase inhibitor with potent anti-TRK activity

n= 96

Data collection

- Demographics
- Toxicity assessment
- AEs management

Treatment-emergent AEs Analysis AEs likely to be mediated by TRK inhibition were analysed:

- Paraesthesias
- Weight gain
- Dizziness with or without ataxia
- Pain with temporary or permanent TRK inhibitor withdrawal

DEMOGRAPHICS AND BASELINE CHARACTERISTICS

Clinicopathologic features of the study population (n=96)	n (%) and continuous as median (range)	
Age* (years)	52 (5-81)	
Female sex	49 (51%)	
Histology		
Lung	43 (45%)	
Gastrointestinal	10 (10%)	
Salivary	8 (8%)	
Sarcoma	8 (8%)	
Thyroid	6 (6%)	
Melanoma	6 (6%)	
Primary brain tumor	5 (5%)	
Neuroblastoma	5 (5%)	
Other	7 (7%)	

Clinicopathologic features of the study population (n=96)	n (%) and continuous as median (range)	
Genomic alteration		
NTRK fusion	39 (41%)	
ROS1 fusion	24 (25%)	
Other**	29 (30%)	
Unknown	4 (4%)	
TRK inhibitor		
First-generation TKI	81 (84%)	
Other TKI	30 (31%)	
TRK inhibitor duration (months)	6 (1-42)	

ALK, anaplastic lymphoma kinase; NTRK, neurotrophic tyrosine receptor kinase; ROS1, c-ros oncogene 1; TKI, tyrosine kinase inhibitor; TRK, tropomyosin receptor kinase *Seven patients were < 18 years old

**Other alterations included NTRK mutation (N = 1), NTRK amplification (N = 2), ROS1 mutation (N = 1), and ALK fusion/mutation (N = 25)

SAFETY PROFILE OF ON-TARGET AEs WITH TRK INHIBITION

AEs, adverse events; TRK A/B/C, tropomyosin receptor kinase A/B/C

WEIGHT GAIN MANAGEMENT

Supportive medication in weight gain		
Agent(s)	Mechanism of action	
Liraglutide	GLP-1 analogue	
Orlistat	Inhibits fat absorption	
Phentermine/ topiramate combination	Increases norepinephrine release; GABA receptor agonist	
Lorcaserin	5-HT _{2C} receptor agonist	
Naltrexone/ bupropion combination	μ-opioid receptor antagonist; dopamine and norepinephrine reuptake inhibitor	
Metformin	Modulates hypothalamic appetite regulatory centers	

Authors recommend to monitor serially weight gain during treatment with TRK Inhibitor

5-HT_{2C}, 5-hydroxytryptamine; GABA, γ-aminobutyric acid; GLP-1, glucagon-like peptide-1; TRK, tropomyosin receptor kinase

Weight Gain

DIZZINESS MANAGEMENT

Supportive medication in dizziness management Agent(s) **Mechanism of action** H₁ histamine receptor antagonist, suppresses Meclizine Dizziness vestibular stimulation, (ataxia or anticholinergic vertigo) Antagonizes histamine and **Scopolamine** serotonin α_1 adrenergic receptor agonist, **Midodrine** increases vascular tone **Dizziness** Fludrocortisone Mineralocorticoid (orthostasis) Metabolized to norepinephrine, **Droxidopa** induces vasoconstriction

→ Authors recommend to characterize the dizziness and to manage it accordingly

TKI, tyrosine kinase inhibitor

WITHDRAWAL PAIN MANAGEMENT

Authors highlight that withdrawal pain can occur with temporary or permanent TKI with anti-TRK activity discontinuation

Conclusion

- **On-target AEs with TRK inhibition can occur** as shown in the retrospective study analysing patients with advanced or unresectable solid tumors treated with at least one dose of a TKI with potent anti-TRK activity
- Dizziness, weight gain and withdrawal pain are the 3 identified on-target AEs
- On-target AEs profile is in line with the known physiological mechanism of the TRK signalling pathway

Discussion

- Some cautions should be taken:
 - The inhibitory actions of TKIs are not only specific to TRKs
 - In the retrospective study only 41% harboured an NTRK-positive solid tumour
- Due to the small size of the study, further analysis to refine the on-target AEs identification should be undertaken especially with the TRK-specific inhibitors such as larotrectinib

REACH NTRK CONNECT VIA TWITTER, LINKEDIN, VIMEO & EMAIL OR VISIT THE GROUP'S WEBSITE http://www.ntrkconnect.info

Follow us on Twitter @ntrkconnectinfo Follow the **NTRK CONNECT** group on LinkedIn

Email froukje.sosef @cor2ed.com

NTRK CONNECT Bodenackerstrasse 17 4103 Bottmingen **SWITZERLAND**

Dr. Froukje Sosef MD

69)

 \square

+31 6 2324 3636

froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

+41 79 529 42 79

antoine.lacombe@cor2ed.com \square

Heading to the heart of Independent Medical Education Since 2012