COR2ED® THE HEART OF MEDICAL EDUCATION

CURRENT PERSPECTIVES ON THE TREATMENT OF PRIMARY CHRONIC ITP IN ADULTS

AN INDEPENDENT, CME-ACCREDITED SYMPOSIUM
14 July 2020

DISCLAIMER

- This scientific medical education symposium is based on an independent medical educational grant from Sobi
- The programme is therefore independent; the content is not influenced by
 Sobi and is the sole responsibility of the experts

• Please note: The views expressed within this presentation are the personal opinions of the experts. They do not necessarily represent the views of the experts' academic institutions or the rest of the faculty

THIS SYMPOSIUM IS ACCREDITED BY EBAC FOR 1 CME CREDIT*

 The event Current Perspectives on the Treatment of Primary Chronic ITP in Adults is accredited by the European Board for Accreditation in Cardiology (EBAC) for 1 hour of External CME credits.

 Each participant should claim only those hours of credit that have actually been spent in the educational activity.

WELCOME AND INTRODUCTION

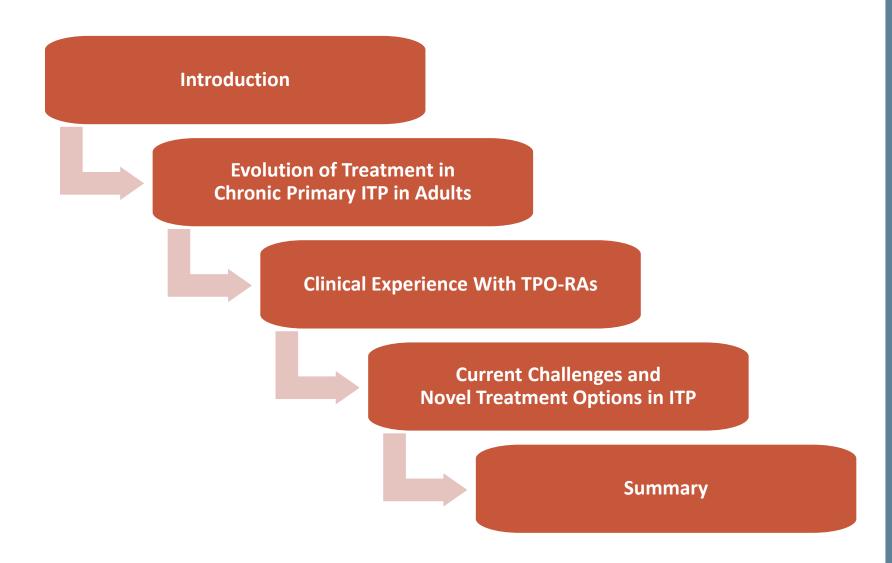
Jerzy Windyga

Department of Haemostasis Disorders and Internal Medicine
Laboratory of Haemostasis and Metabolic Diseases
Institute of Haematology and Transfusion Medicine
Warsaw, Poland

DISCLOSURES

- Research support: Alexion, Alnylam, Baxalta, Bayer, CSL Behring,
 Ferring Pharmaceuticals, Novo Nordisk, Octapharma, Rigel Pharmaceuticals,
 Roche, Sanofi, Shire, Siemens, Sobi, Werfen
- Stock ownership: none

EDUCATIONAL OBJECTIVES


Review of the **current standard** of care in ITP, detailing its **risk and benefit**

Explain the mechanism of action and clinical data of potential new and innovative therapeutic options in ITP

Comparison of standard of care today and in the future

PROGRAMME

INTRODUCING THE FACULTY

Chair

Prof Jerzy Windyga, MD, PhD Poland

Prof David J. Kuter,
MD, DPhil
United States

Prof Pål Andrè Holme, MD, PhD Norway

Dr Vickie McDonald, MA, MRCP, FRCPath, PhD United Kingdom

Head of the Department of Disorders of Haemostasis and Internal Medicine at the Institute of Haematology and Transfusion Medicine, Warsaw, Poland

Chief of Hematology at Massachusetts General Hospital, and Professor of Medicine at Harvard Medical School, Boston, USA

Professor of Haematology and Senior Haematologist at the Oslo University Hospital, Rikshospitalet, and Institute of Clinical Medicine, University of Oslo, Norway

Consultant Haematologist at the Royal London Hospital, UK; honorary senior lecturer at Queen Mary University of London; and National Chief Investigator for the UK ITP registry

IMMUNE THROMBOCYTOPENIA (ITP)

Acquired autoimmune disorder characterised by a low platelet count resulting from platelet destruction and impaired platelet production

Incidence 2-5 per 100,000

Isolated primary condition or secondary to other conditions (e.g. concomitant autoimmune disease)

Heterogeneous disorder – variable clinical symptoms (mild to severe bleeds)

THE IMPACT OF ITP

- Severe bleeding is reported in 9.5% of adults and 20.2% of children¹
- Adults with ITP have a 1.3–2.2-fold higher mortality than the general population (due to cardiovascular disease, infection, and bleeding)²
 - Significant impact on health-related quality of life (HRQoL) (e.g. fatigue is reported in 22–45% of patients with ITP)¹
 - Many patients with ITP may require special attention and long-term treatment^{3,4}
- Optimal treatment decisions for each patient remain a challenge in many cases^{3,4}

EVOLUTION OF TREATMENT IN ITP

PÅL ANDRÈ HOLME, MD, PhD
Professor of Haematology
Department of Haematology and
Institute of Clinical Medicine, Oslo University Hospital
University of Oslo, Norway

WHAT ARE THE CURRENT TREATMENT OPTIONS FOR CHRONIC ITP IN ADULTS?

DISCLOSURES

• Consultant: Bayer, CSL, Novo Nordisk, Octapharma, Pfizer, Shire, Sobi

MANAGEMENT OF NEWLY DIAGNOSED ITP IN ADULTS

WHO ARE ASYMPTOMATIC OR HAVE MINOR MUCOCUTANEOUS BLEEDING

Admission or outpatient Treatment management Platelet count ≥ 30 x 10⁹/L Platelet count < 20 x 10⁹/L Observation Hospital admission (in case of bleeds) Platelet count < 30 x 10⁹/L Platelet count ≥ 20 x10⁹/L Corticosteroids (without rituximab) Outpatient management - Prednisone (0.5-2.0 mg/kg per day) or dexamethasone (40 mg/day for 4 days) as initial therapy

Short course (≤ 6 weeks) of prednisone

ITP TREATMENT OPTIONS

Clinical situation	Therapeutic option		
Initial treatment of newly diagnosed ITP	Corticosteroids	dexamethasonemethylprednisoloneprednis(ol)one	
	Intravenous immunoglobulin (IVIg)		
	Anti-D (licensed and available for ITP in only a few countries)		
Subsequent treatment	Medical therapies with robust evidence	 rituximab thrombopoietin receptor agonists (TPO-RAs: eltrombopag, avatrombopag, romiplostim) fostamatinib 	
	Medical therapies with less robust evidence	 azathioprine cyclophosphamide cyclosporine A danazol dapsone mycophenolate mofetil TPO-RA switch vinca alkaloids 	
	Surgical therapy	Splenectomy	
Treatment after failure of multiple therapies	 Accessory splenectomy alemtuzumab Combination of initial and subsequent therapies Combination chemotherapy Clinical trials Haematopoietic stem cell transplantation Splenectomy, if not already performed Supportive care 		

RECOMMENDED ITP TREATMENT GOALS

Treatment goals should be individualised to the patient and the phase of the disease

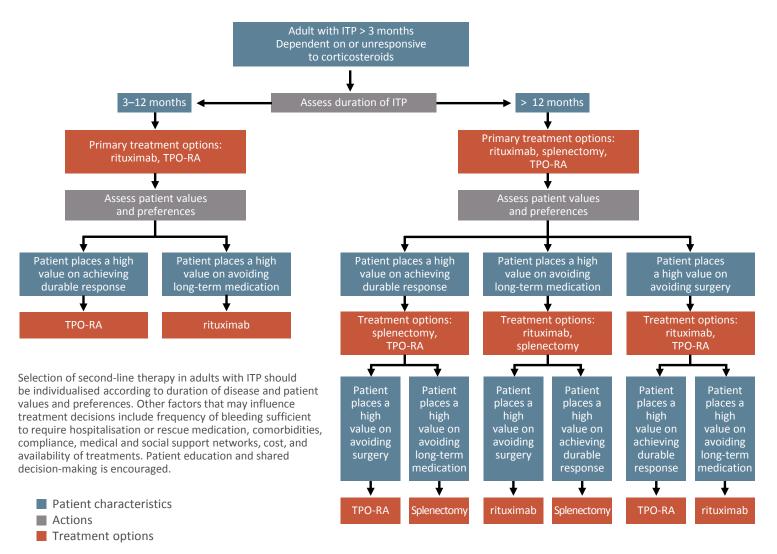
Treatment should **prevent** severe bleeding episodes

Treatment should maintain a target platelet count > 20–30 x 10⁹/L

Treatment should have minimal toxicity

Treatment should optimise HRQoL

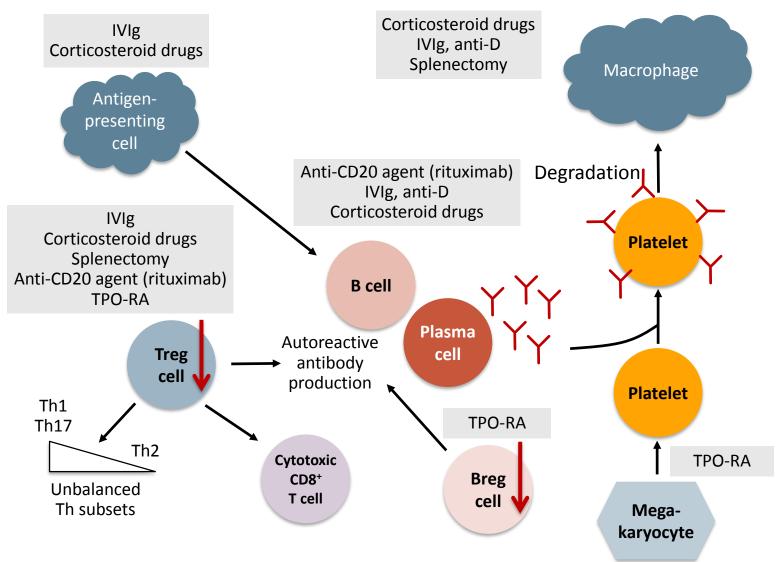
At least for symptomatic patients, because the risk of major bleeding increases below this level


- There are many medical treatment options with few adverse events (AEs)¹
 - Not all therapies are available in all countries
 - Therefore the recommendations should be modified on the basis of available resources and patient preference

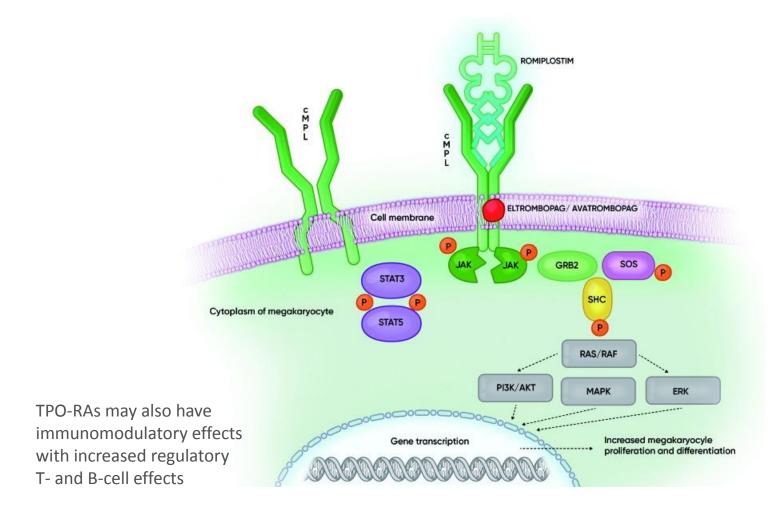
Some medical options may require continued treatment¹

- Up to 1/3 of patients may remit in 1 year and up to 80% may remit in 5 years²
 - If possible, splenectomy should be deferred for ≥ 1 year to allow for remission

COR2ED® THE HEART OF MEDICAL EDUCATION


ALGORITHM FOR THE SELECTION OF SECOND-LINE THERAPY IN ADULTS WITH ITP

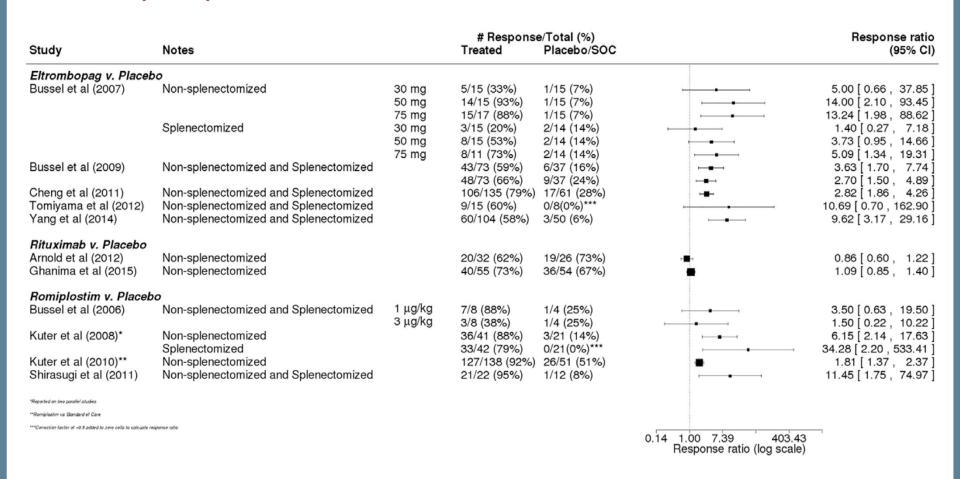
ITP, immune thrombocytopenia; TPO-RA, thrombopoietin receptor agonist Neunert C, et al. Blood Adv. 2019;3:3829–66


THERAPEUTIC MECHANISMS OF CURRENT ITP TREATMENTS

THERAPEUTIC MECHANISMS OF TPO-RAS

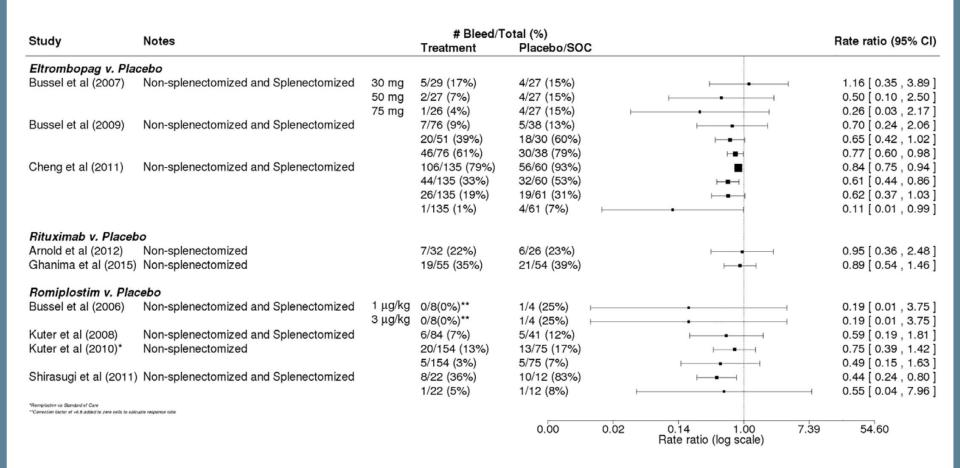
AKT, a serine threonine protein kinase; cMPL, thrombopoietin receptor; ERK, extracellular-signal-regulated kinase; GRB2, growth factor receptor-binding protein 2; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; PI3K, phosphatid-ylinositol 3-kinase; RAF, rapidly accelerated fibrosarcoma kinase; RAS, rat sarcoma GTPase; SHC, Src homology collagen protein; SOS, son of sevenless; STAT, signal transducer and activator of transcription; TPO-RA, thrombopoietin receptor agonist

Ghanima W, et al. Haematologica. 2019;104:1112-23



WHAT ARE THE KEY SAFETY AND EFFICACY DATA SUPPORTING THESE TREATMENT OPTIONS?

COMPELLING EVIDENCE OF PLATELET RESPONSE WITH TPO-RAS


OVERALL PLATELET RESPONSE IN RANDOMISED CONTROLLED TRIALS (RCTs) OF RITUXIMAB OR TPO-RAS

REDUCED BLEEDING WITH TPO-RAS

BLEEDING IN RCTs OF RITUXIMAB OR TPO-RAS

AVATROMBOPAG SUPERIOR TO PLACEBO

EFFICACY ENDPOINTS, PHASE 3 STUDY

	avatrombopag (n = 32)	placebo (n = 17)	P-value
Median cumulative duration of platelet response, weeks (min., max.)*	12.4 (0, 25)	0.0 (0, 2)	< 0.0001
Platelet count $\geq 50 \times 10^9/L$ at day 8, % (95% CI)	65.6 (49.2–82.1)	0.0	< 0.0001
Any bleeding event [†] , %	43.8	52.9	NS

^{*}The total number of weeks in which platelet count is $\geq 50 \times 10^9 / L$ during the core study in the absence of rescue therapy. †Lower for avatrombopag when adjusted for the 2.6-fold longer mean exposure time for avatrombopag-treated patients.

WHAT ARE THE MAIN UNMET NEEDS IN CHRONIC ITP IN ADULTS?

KEY UNMET NEEDS IN CHRONIC ITP

- When to introduce which treatment option
- Access
- Heterogenicity of the disease
- Need for a tailored treatment approach
- Optimal management of platelet fluctuations during treatment
- Risk and minimisation of risk of bleeding and thrombotic events

KEY UNMET NEEDS IN CHRONIC ITP, CONT'D

- No head-to-head RCTs have directly compared subsequent therapy
- ↑ More RCTs are needed
- How do we obtain better long-term results using rituximab?
- ? The mechanisms of failure of TPO-RAs are not well known
- Who will have a durable response after TPO-RA discontinuation?
- What are the long-term effects of TPO-RAs?

CLINICAL EXPERIENCE WITH TPO-RAS

David J. Kuter, MD, DPhil

Chief of Hematology, Massachusetts General Hospital Professor of Medicine, Harvard Medical School

Vickie McDonald, MA, MRCP, FRCPath, PhD

Consultant Haematologist, Royal London Hospital Honorary Senior Lecturer, Queen Mary University of London

GUIDELINES NOW SUGGEST STARTING TPO-RAS EARLIER IN THE COURSE OF THE DISEASE. WHAT DATA ON EARLY TPO-RA TREATMENT ARE AVAILABLE?

David J. Kuter

DISCLOSURES

- Research support: Agios, Alnylam, Argenx, Bioverativ, Bristol Myers Squibb, Incyte, Principia, Protalix, Rigel, Syntimmune
- Consulting: Alnylam, Amgen, Argenx, 3Bios, Bristol Myers Squibb, Dova, Fujifilm, Genzyme, GSK, Kirin, Medimmune, ONO, Pfizer, Principia, Rigel, Shionogi, Syntimmune, UCB
- Stock ownership: Rubius
- Off-label uses: none

TPO-RAs are as effective in early ITP as in chronic ITP

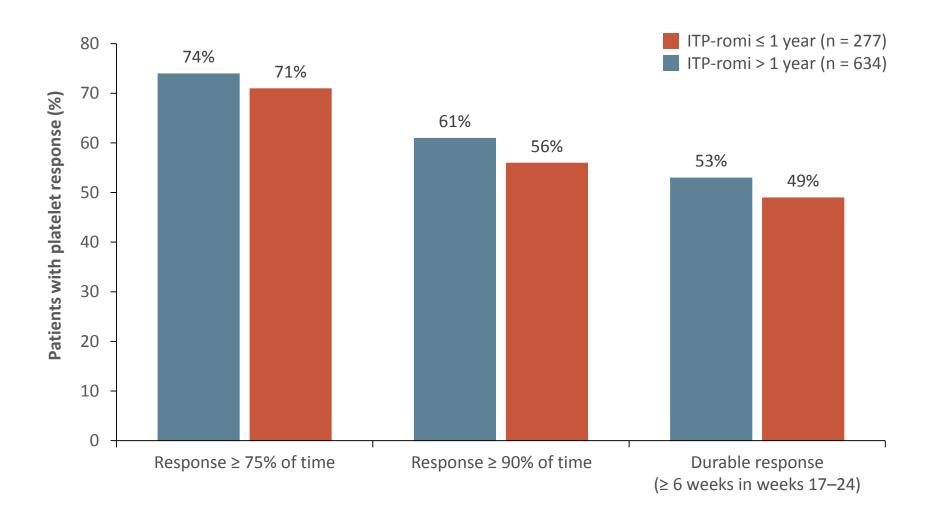
EARLY ITP VS CHRONIC ITP

Early¹

- Newly diagnosed: 0–3 months
- **Persistent ITP:** > 3–12 months

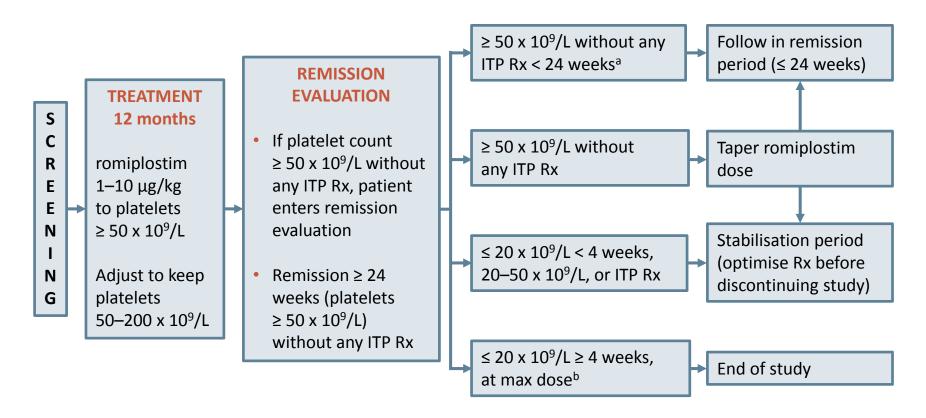
Chronic

- Before 2009, > 6 months
 - Basis for regulatory approval of romiplostim and eltrombopag
- > 1 year¹
 - Chronic ITP: > 12 months
- No known pathophysiological difference
 - "Epitope walking"?
- Concept of "chronic" deserves updating


POOLED ANALYSIS OF NINE STUDIES OF ROMIPLOSTIM

CO	R2	E	D®
THE HEART	OF MEDICAL	FDLICA	TION

	ITP ≤ 1 year					
	< 3 months (n = 155)	3-12 months (n = 156)	Total (n = 311)	ITP > 1 year (n = 726)		
Female, n (%)	77 (50)	88 (56)	165 (53)	470 (65)		
Age, median (Q1, Q3), years	52 (32, 69)	52 (35, 68)	52 (34, 68)	54 (42, 67)		
Baseline platelet count, median (Q1, Q3), × 10 ⁹ /L	15 (8, 27)	20 (12, 29)	18 (10, 28)	18 (10, 29)		
ITP duration, median (Q1, Q3), months	1.2 (0.7, 2.0)	5.8 (4.2, 8.4)	3.0 (1.2, 5.8)	72 (34, 160)		
Prior therapies, n (%)						
≤ 3	104 (67)	98 (63)	202 (65)	251 (35)		
> 3	6 (4)	11 (7)	17 (5)	162 (22)		
Not collected	45 (29)	47 (30)	92 (30)	313 (43)		
Prior splenectomy, n (%)	6 (4)	19 (12)	25 (8)	320 (44)		



EARLY ITP: STUDY DESIGN

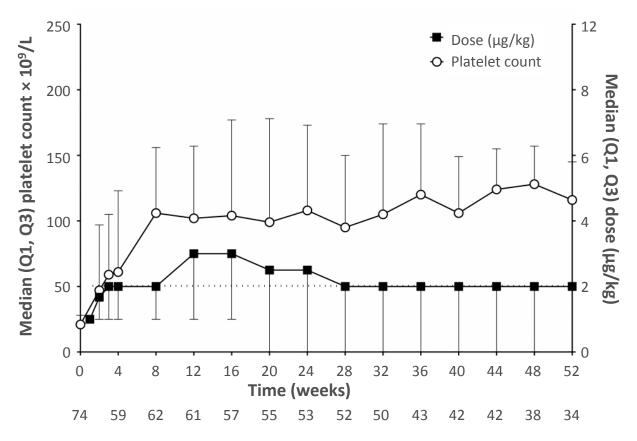
PHASE 2, INTERVENTIONAL, SINGLE-ARM STUDY

^a For patients meeting these criteria in the treatment period, the 24 weeks would start then.

^b If these criteria were met in the treatment period, treatment would be discontinued.

EARLY ITP: RESPONSES

	Romiplostim (n = 75)
Patients with platelet response, ^a n (%)	70 (93)
Time to platelet response, median (95% CI), weeks	2.1 (1.1–3.0)
Patients with ITP remission ^b n (%) 95% CI, %	24 (32) (22–44)
Time to ITP remission, ^b median (range), weeks	27 (6–57)


^a Platelet response = median platelet count ≥ 50 x 10⁹/L during any month.

^b Remission = all platelet counts ≥ 50 x $10^9/L$ for ≥ 6 months without romiplostim or any ITP medication.

³¹ patients started ITP remission. Patients starting remission were followed for 6 months only.

PLATELET COUNTS AND DOSING: ALL PATIENTS

- A platelet count \geq 50 x 10⁹/L was achieved in 25% of patients after 1 week and in 50% after 2 weeks
- Median (Q1, Q3) treatment duration was 51 (18, 52) weeks in a 12-month period; range 0.3–52.4 weeks
- Median (Q1, Q3) average weekly dose was 2.6 (1.6, 3.9) μg/kg; range 0.7–9.0 μg/kg

GUIDELINES

- In adults with ITP lasting ≥ 3 months who are corticosteroid-dependent or have no response to corticosteroids, the ASH guideline panel suggests¹
 - Either splenectomy or a TPO-RA
 - Rituximab rather than splenectomy
 - TPO-RA rather than rituximab
- In adults with persistent or chronic ITP **after steroid cessation**, the International Consensus Report² recommends **medical therapy** (TPO-RA, rituximab, fostamatinib) for 12–24 months before considering splenectomy

HOW TO TREAT ITP: SUMMARY

Many ITP patients do not need treatment

Initial treatment is prednisone or IVIg

Splenectomy works

But increased rate of VTE, infection

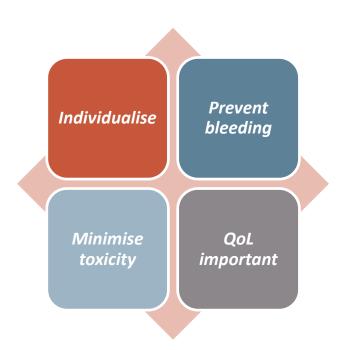
Not all ITP in adults will become or remain chronic

Give medical therapy a chance before splenectomy

- rituximab occasionally gives a longterm treatment-free response
- TPO-RAs are highly effective
 - Low rate of AEs
 - Improve HRQoL
 - May not need to be "forever"
- fostamatinib may be considered
- Don't forget danazol, azathioprine, dapsone, MMF, cyclosporine

CHANGING TREATMENT PATTERNS IN ITP: WHERE ARE WE NOW?

Vickie McDonald


DISCLOSURES

• Advisory and speaker work: AbbVie, Amgen, Bayer, Novartis

GOALS OF THERAPY IN ITP

Moved from "The platelet count is key" to "Platelets plus symptoms (and minimising toxicity) are key"

Phase	Definition	Chance of spontaneous remission	Treatment goal
New diagnosis, acute	Up to 3 months after diagnosis	Common	Stop bleeding Rapid platelet count rise Prevent bleeding Cure?
Persistent	3–12 months after diagnosis	Less common	Stop or prevent bleeding Stabilise platelet count Mindful of AEs from medication Cure?
Chronic	> 12 months from diagnosis	Uncommon	Prevent bleeding Mindful of AEs from medication

Optimising treatment

- Minimise steroid use
- Sequence therapy appropriately
- Optimise target platelet count
- Optimise timing of therapy
- Use medication for which there is the largest evidence base
- Use indicators other than platelet count, e.g. QoL and fatigue
- Understand the patient's perspective and anxieties with ITP and its treatment
- Increase patient involvement in the choice of treatment and patient understanding of the impact of ITP on QoL^{1, 2, 3}

AE, adverse event; ITP, immune thrombocytopenia; QoL, quality of life

- 1. Provan D, et al. Blood Adv. 2019;3:3780–817. 2. Neunert C, et al. Blood Adv. 2019;3:3829–66.
- 3. Matzdorff A, et al. Oncol Res Treat. 2018;41 suppl 5:1-30

INFLUENCES ON TREATMENT PATTERNS

- Changes in guidance
 - 1st, 2nd, 3rd line treatment

Oncology

- Trial data and literature
 - RCT data

- Licensing
 - Changing definitions of persistent and chronic

Research and Treatment

Review Article

Oncol Res Treat 2018;41(suppl 5):1-30
DDI: 10.11569000492187

Published online: September 13, 2018

Immune Thrombocytopenia – Current Diagnostics and

Therapy: Recommendations of a Joint Working Group

Axel Matzdorff^a Oliver Meyer^b Helmut Ostermann^c Volker Kiefel^d Wolfgang Eberl^e Thomas Kühne^f Ingrid Pabinger^g Matthias Rummel^h

of DGHO, ÖGHO, SGH, GPOH, and DGTI

- Localised and national funding arrangements
 - Links to local and national guidance

CHANGING TREATMENT USE IN THE UK: DATA FROM THE UK (PRIMARY) ITP REGISTRY

- Nationwide registry
- Eligibility criteria
 - > 18 years old
 - Living in UK
 - Platelet count < 100 x 10⁹/L
 - No evidence of other cause of thrombocytopenia
- Collects anonymised data
 - Epidemiology
 - Clinical and laboratory features
 - Treatment
- Plus DNA

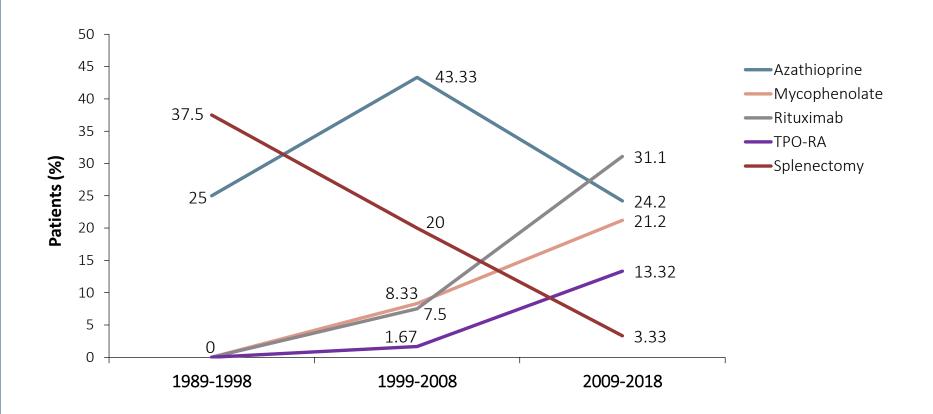
Total number of patients: 3,236		
Sex, n (%)		
Female	1,814	56.7
Male	1,375	43.0
Unknown	10	0.3
Median (IQR) age at diagnosis, years		
All	50	31–66
Male	56	36–70
Female	46	28-62
Date of diagnosis, n (%)		
1/12/2008-30/11/2018	1,976	62.9
1998–2008	804	25.6
1988–1998	251	8.0
< 1988	113	3.6

Test	Data entry (%)	Median (IQR)	
Full blood count			
Haemoglobin (g/L)	100	135 (127–147)	
WBC (x 10 ⁹ /L)	100	7.2 (5.5–9.96)	
Platelets (x 10 ⁹ /L)	100	21 (6–59)	
Coagulation screen			
PT (sec)	100	11.7 (10.7–12.9)	
APTT (sec)	100	28.5 (25.0–21.5)	

EMERGENCY AND RESCUE THERAPIES

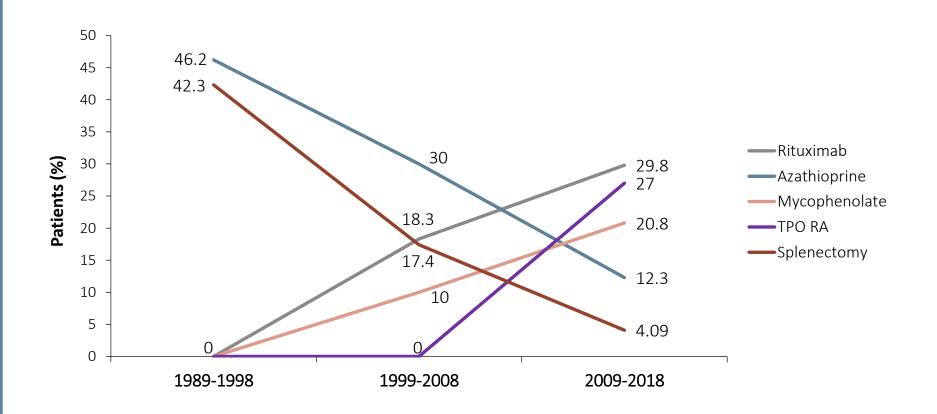
UK ITP REGISTRY (n = 3,236)

Participants who received therapy (%) 1989-1998 1999-2008 2009-2018 prednisolone 70 79.1 82.5 dexamethasone 9.4 8.8 11.6 methylprednisolone 6.3 4.6 2.4 **IVIg** 42.4 40.3 37.7


SPANISH REGISTRY STUDY¹ (n = 433)

Patterns of corticosteroid use as first-line treatment for primary ITP

	Primary ITP patients, n (%)	
Corticosteroid(s) as 1st-line treatment	324 (74.8)	
Corticosteroid monotherapy	176 (40.6)	
Corticosteroid + IVIg (± other therapies)	142 (32.8)	
Corticosteroid + other therapies (except IVIg)	6 (1.4)	
Type of corticosteroid		
prednisone	282 (65.1)	
methylprednisolone	52 (12.0)	
dexamethasone	27 (6.2)	
deflazacort	5 (1.1)	
prednisolone	2 (0.5)	

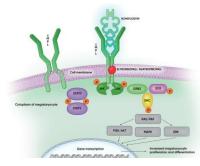

SECOND-LINE THERAPIES

THIRD-LINE THERAPIES

OTHER INTERNATIONAL DATA

	USA ¹ (2011–2016)	CARMEN ²	SPANISH ³
Patients, n	447	90 (primary ITP)	433 (primary ITP)
Steroids	76% by 1 year from diagnosis	60% (during week of diagnosis)	74.8%
IVIg	-	43% (during week of diagnosis)	5.8%
Other treatments (by 1 year)	rituximab 16% TPO-RA (both) 14% Splenectomy < 4%	rituximab 11 (12%) TPO-RA 15 (17%) Splenectomy 1 (1%) danazol 7 (8%)	Splenectomy 3.5%

^{1.} Cetin K, et al. Blood. 2018;132 suppl 1:497. 2. Moulis G, et al. Am J Hematol. 2017;92:493–500.


^{3.} Palau J, et al. Hematology. 2017;22:484–92

WHAT IS KNOWN ABOUT LONG-TERM REMISSION WITH TPO-RA IN CHRONIC ITP?

Vickie McDonald

TPO-RA SUMMARY

	romiplostim	eltrombopag	avatrombopag
Type of molecule	Peptide	Small molecule	Small molecule
TPO receptor site of action	Extracellular	Transmembrane	Transmembrane
Potency	8-10 times increased platelet count at maximum dose compared to eltrombopag	-	3-5 times increased platelet count at maximum dose compared to eltrombopag
Route	Subcutaneously once weekly	Oral, daily	Oral, daily
Administration considerations	Can patient self-administer injections	Timing in relation to food containing calcium	None
Safety and tolerability	Well tolerated, low AEs Reticulin and VTE comparable Antibody development	Well tolerated, low AEs Reticulin and VTE comparable Transaminitis	Well tolerated, low AEs VTE comparable Reticulin has not been studied
Current indications	Chronic ITP (adults and children)	Chronic ITP (adults and children) Hepatitis C-associated thrombocytopenia Severe aplastic anaemia	Periprocedural thrombocytopenia in patients with chronic liver disease Chronic ITP (USA), awaiting regulatory approval in EU

AE, adverse event; ITP, immune thrombocytopenia; TPO, thrombopoietin; VTE, venous thromboembolism Ghanima W, et al. Haematologica. 2019;104:1112–23. Al-Samkari H and Kuter DJ. Ther Adv Hematol. 2019;10:2040620719841735

Increased or improved T-regulatory cell activity¹

Increased B-regulatory cell activity²

Increased TGF-beta (mediates the increased T- and B-regulatory cell activity)³

Change in Fc receptors: reversal of Fc receptor balance towards FcRIIb (inhibitory)⁴

Reduces antiplatelet antibody levels in mice with ITP⁵

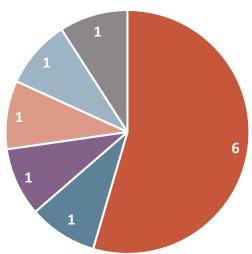
TREATMENT FREE "REMISSION" IN ITP: TERMINOLOGY

- Treatment-free remission vs thrombocytopenia-free remission
 - Significance of terminology
 - Complete response (CR): Platelets ≥ 100 x 10⁹/L
 - (Partial) response: Platelets $\ge 30 \times 10^9$ /L and two-fold increase from baseline
- Treatment-free remission
 - No longer requiring active therapy, considered low risk for bleeding
- What threshold?
 - Platelets $> 50 \times 10^9/L$
 - Platelets $> 30 \times 10^9/L$
- For how long?
- Mazzucconi et al.¹
 - "Durable response": response or CR lasting ≥ 4 weeks with a stable dose of TPO-RA
 - "Sustained response": platelet count ≥ 30 × 10⁹/L after > 4 weeks since TPO-RA discontinuation, in the absence of concomitant treatments

Study	Patients, n	Patients who discontinued TPO-RA, n (% of all patients)	Patients with off- treatment responses, n (% of all patients)	Median follow-up, months
Leven et al.	15	5 (33)	5 (33)	6+
Mahevas et al.	54	20 (37)	8 (15)	13.5
Cervinek et al.	46	11 (24)	11 (24)	33
Gonzalez-Lopez et al.	12	12 (100)	12 (100)	7
Newland et al.	4	3 (75)	3 (75)	29.5
Marshall et al.	43	12 (28)	12 (28)	20
Bussel et al.	302	10 (3)	9 (3)	6+
Carpenedo et al.	27	13 (48)	13 (48)	26
Mazzucconi et al. ²	39	7 (18)	7 (18)	19.4

POSSIBLE CRITERIA TO BE CONSIDERED AS PARAMETERS OF TPO-RA TAPERING AND DISCONTINUATION

Patients to consider for tapering	Patients to perhaps not consider for tapering
Patients with a CR and treated with lower doses of a TPO-RA for ≥ 6 months *? CR or lower platelet count acceptable	Patients requiring high-dose TPO-RA and platelets $<50 \times 10^9/L$ ITP that was previously hard to manage
ITP duration: not predictive but better if shorter	TPO-RA < 6/12 months
Age of patient: not predictive	High risk of bleeding if treatment stopped
Number of lines of previous treatment: not predictive, but better if low	On concurrent antiplatelets or anticoagulants required to support higher platelet count
	Significant comorbidities, risk of recurrent infection

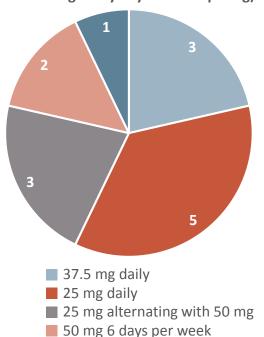

HOW TO TAPER: NO INTERNATIONAL CONSENSUS

COR2ED®

EXPERT OPINION

DOSE REDUCTION: HOW QUICKLY?

romiplostim (considering a dose of $x \mu g/kg$ every week before tapering)


- Go to $x 1 \mu g/kg$ every week
- Go to $x 2 \mu g/kg$ every week
- Extend the same dose by 1 day
- At fortnightly intervals drop to 75% of x, then 50%, then 25%, then 10%, then stop

Tapering

Dose reduction by 25 mg every 2 weeks, to a minimum dose of 25 mg every 4 days, before interrupting treatment Period of tapering and discontinuation (week 25–week 32)

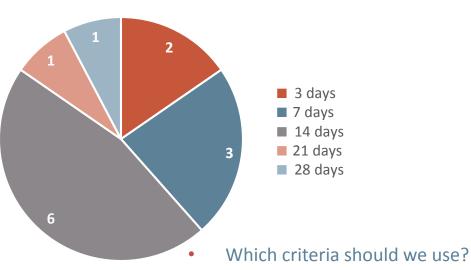
Period of observation (week 33–week 52)

eltrombopag (considering a dose of 50 mg every day before tapering)

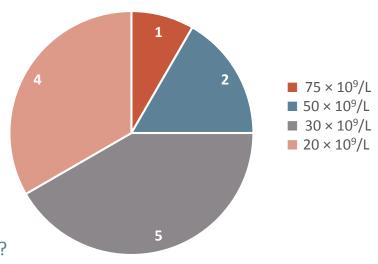
■ 50 mg 5 days per week

■ Go to $x - 1 \mu g/kg$ every other week

■ Go to $x - 2 \mu g/kg$ every other week


HOW DO WE MONITOR TAPERING AND DEFINE FAILURE?

EXPERT OPINION


MONITOR: HOW CLOSELY?

Time to platelet-count monitoring after initiating TPO-RA dose reduction

TAPER FAILURE?

If you are tapering off TPO-RA, below which platelet count would you reinstitute treatment or stop tapering or add another treatment?

- Platelet count: 50 vs 30 vs 20 x 10⁹/L
- Bleeding
- QoL
- Trial data needed: TAPER¹

ACKNOWLEDGEMENTS

UK ITP registry team

H Miah

A Miah

L Taylor

F Chen

G Hannah

D Provan

A Newland

Royal London Hospital clinical trials fellows

Dr S Todd

Dr P Raheja

D A Zaidi

Bradford Royal Infirmary
Birmingham Women's and Children's NHS Foundation Trust
Queen's Hospital Burton
Royal Derby Hospital / University Hospitals of Derby and Burton NHS Foundation Trust
Castle Hill Hospital
Bedford Hospital
West Middlesex University Hospital
Kingston Hospital NHS Foundation Trust
Yeovil District Hospital
St George's Hospital
Glasgow Royal Infirmary
Bwrdd lechyd Cwm Taf Health Board, Prince Charles Hospital and Royal Glamorgan Hospital. Wales
Royal Victoria Infirmary, Newcastle
University Hospital Southampton NHS Foundation Trust
University Hospitals Bristol NHS Foundation Trust
Royal Bournemouth Hospital
Worcestershire Royal Hospital
Sunderland Royal Hospital
The Queen Elizabeth Hospital, King's Lynn NHS Trust
Imperial College Healthcare NHS Trust, Hammersmith Hospital
Royal Devon & Exeter Hospital
Royal United Hospital Bath NHS Trust
The James Cook University Hospital
Musgrove Park Hospital
Epsom and St Helier University Hospitals NHS Trust
Medway NHS Foundation Trust/Medway Maritime Hospital
Royal Liverpool and Broadgreen University Hospital Trust
Shrewsbury and Telford Hospital NHS Trust
East Kent Hospitals University NHS Foundation Trust
Salisbury NHS Trust
Gloucestershire Hospitals NHS Trust
South Warwickshire Foundation Trust / Warwick Hospital
Kettering General Hospital NHS Foundation Trust Hospital
Ealing Hospital NHS Trust, Northwick Park
Leicester Royal Infirmary
Betsi Cadwaladr University Health Board, Glan Clwyd Hospital
Harrogate and District Hospital
Betsi Cadwaladr University Health Board, Ysbyty Gwynedd
Nottingham University Hospitals NHS Trust / Nottingham City Hospital

Dr Q Hill	St James University Hospital (The Leeds Teaching Hospitals NHS Trust)
Dr F Jack	Poole Hospital NHS Foundation Trust
Dr H Jackson	Aneurin Bevan University Health Board, Nevill Hall, Royal Gwent
Dr S Johns	Royal Cornwall Hospital
Dr M Karanth	West Suffolk Hospital
Dr M Kilner	Northumbria Healthcare NHS Foundation Trust
Dr M Kmonicek	North Bristol NHS Trust / South Mead Hosptial
Dr O Kreze	Newham University Hospital
Dr W Lester	Queen Elizabeth Hospital Birmingham
Dr H Lyall	Norfolk and Norwich University Hospital
Dr S Makkuni	Basildon University Hospital
Dr K Mandal	Royal Wolverhampton NHS Trust
Dr S Marshall	Gateshead NHS Foundation Trust / Queen Elizabeth Hospital
Dr G Matthias	Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital
Dr V McDonald	The Royal London Hospital
Dr M Mohan	Colchester General Hospital
Dr T Moorby	Sherwood Forest Hospitals NHS Foundation Trust, King's Mill Hospital
Dr L Munro	Scarborough Hospital, York Teaching Hospital NHS Foundation Trust
Prof M Murphy	Oxford University Hospitals NHS Foundation Trust / The Churchill Hospital
Dr V Murphy	Heartlands Hospital
Dr M Mushkbar	University Hospitals Coventry and Warwickshire NHS Trust
Dr J Neilson	Russells Hall Hospital / The Dudley Group NHS Foundation Trust
Dr E Nga	Airedale NHS Foundation Trust
Dr T Nokes	Plymouth Hospitals NHS Trust, Derriford Hospital
Dr R Oakes	North Cumbria University Hospitals NHS Trust
	Frimley NHS Trust - previously Heatherwood & Wexhampark Hospitals NHS
Dr M Offer	Foundation Trust
Dr R Rayment	Cardiff and Vale, University Hospital of Wales
Dr C Rinaldi	United Lincolnshire, Pilgrim, Grantham, Lincoln
Dr M Robinson	Cambridge University Hospitals NHS Foundation Trust
Dr S Robinson	Guy's and St Thomas Hospital
Dr L Robinson	County Hospital, Wye Valley NHS Trust (Hereford)
	Basingstoke & North Hampshire Hospital; Royal Hampshire County Hospital,
Dr N Sargant	Winchester
Prof M Scully	University College London Hospitals
Dr M Sivakumaran	North West Anglia Foundation Trust, Peterborough City Hospital
Dr J Tam	Chesterfield Royal Hospital NHS Foundation Trust
Dr J Thachil	Manchester Royal Infirmary / Manchester University NHS Foundation Trust
Dr M	
Thanigaikumar	Lewisham & Greenwich NHS Trust
Dr D Turner	Torbay Hospital
Dr B Vadher	Princess Royal University Hospital, King's College Hospital
Dr K Wadehra	Barking, Havering and Redbridge University Hospitals NHS Trust (BHR)
Dr S Watt	Manchester University NHS Foundation Trust / Wythenshawe Hospital
Dr J Wilson	St Richard's Hospital, Worthing Hospital

WHAT IS THE LONG-TERM SAFETY PROFILE OF TPO-RAs?

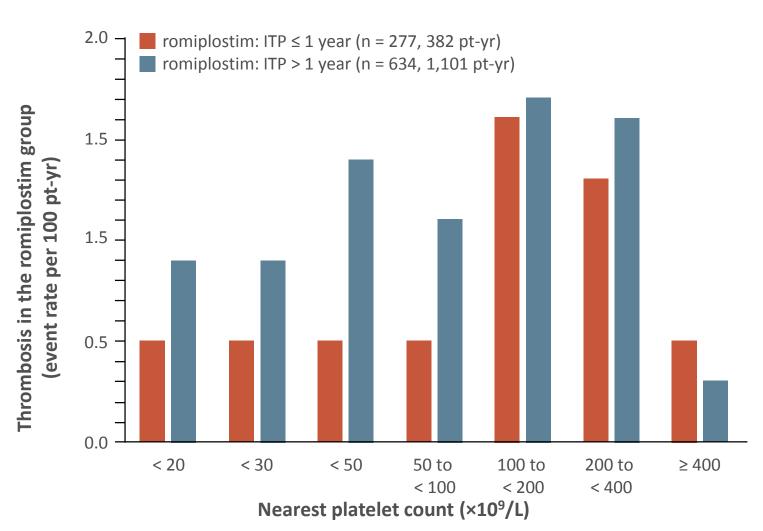
David J. Kuter

COR2ED® THE HEART OF MEDICAL EDUCATION

POTENTIAL ADVERSE CONSEQUENCE OF THROMBOPOIETIC GROWTH FACTORS

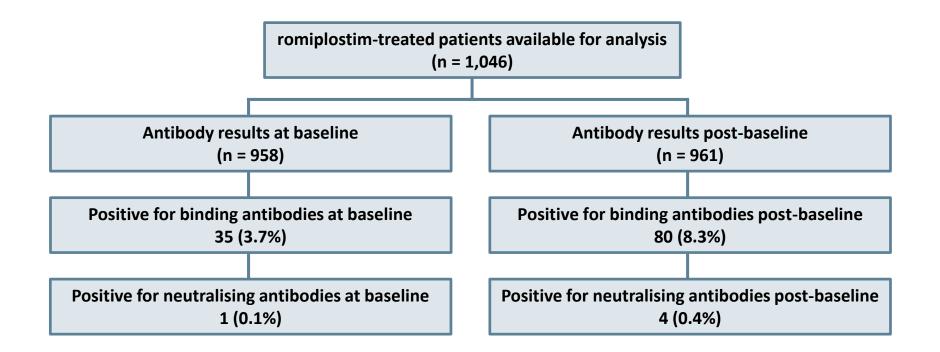
- Thrombocytosis
- Thrombosis
- Stimulation of tumour growth
- Stimulation of leukaemia cell growth
- Interactions with other cytokines

- Autoantibody formation
- Stem cell depletion
- Reduction of threshold for platelet activation
- Rebound worsening of thrombocytopenia
- Increased bone-marrow reticulin


POOLED ANALYSIS: THROMBOTIC EVENTS IN ALL ROMIPLOSTIM STUDIES

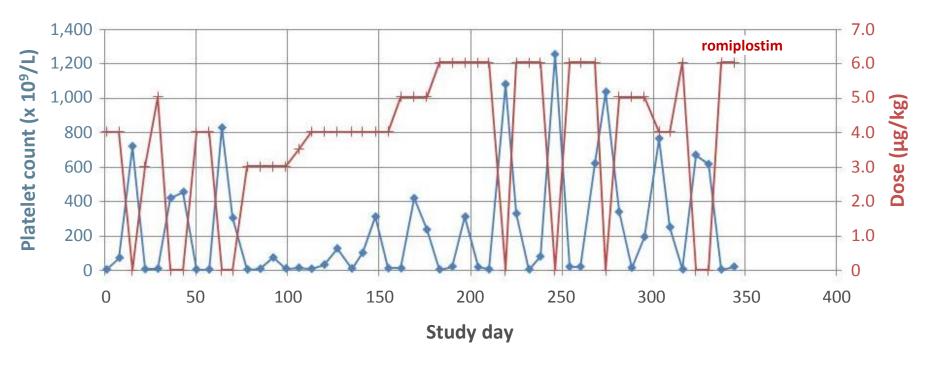
	Romiplostim	Placebo or SOC
	n = 994	n = 138
	1,520 pt-yr	110 pt-yr
Thrombotic or	83 (8.4%)	6 (4.3%)
thromboembolic events	5.5/100 pt-yr CI 4.4-6.8	5.5/100 pt-yr CI 2.0-11.9
Serious thrombotic or	61 (6.5%)	2 (1.4%)
thromboembolic events	4.0/100 pt-yr CI 3.1-5.2	1.8/100 pt-yr CI 0.2-6.6

No relation with platelet count



NO RELATION BETWEEN PLATELET COUNT AND THROMBOSIS EVENTS

ANTIBODIES TO TPO-RA (ROMIPLOSTIM) ARE RARE



- No TPO-neutralising antibodies
- No effect on platelet count

DANGER OF WITHHOLDING A DOSE

Platelet count

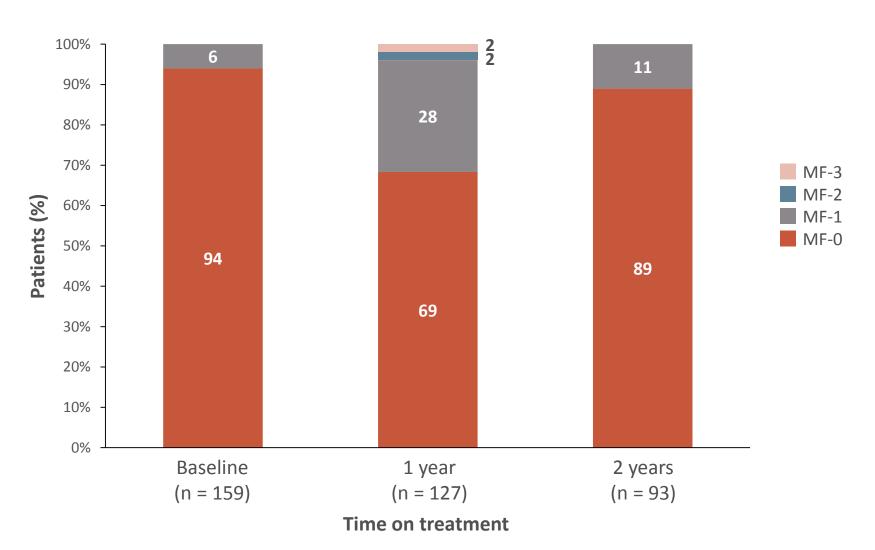
Mean (SD) 239 (328) Median (range) 53 (5–1,257)

Dose

Mean (SD) 4 (2) μg/kg Median (range) 4 (0–6) μg/kg

BONE MARROW FIBROSIS: PROSPECTIVE TRIALS

- NCT00907478: a prospective study evaluating changes in bone marrow morphology in adult subjects receiving romiplostim for the treatment of thrombocytopenia associated with ITP^{1,2}
 - Bone marrow studies at baseline and after 1, 2, and 3 years of treatment
 - Primary endpoint: rate of collagen fibrosis
 - Multiple secondary endpoints: reticulin
- NCT01098487: a longitudinal 2-year bone marrow study of eltrombopag in previously treated adults with chronic ITP^{3,4}
 - Bone marrow studies at baseline and after 1 and 2 years of treatment



INCIDENCE OF BONE MARROW FIBROSIS IN ITP PATIENTS TREATED WITH ROMIPLOSTIM

	After 1 year (n = 50)	After 2 years (n = 50)	After 3 years (n = 69)	All groups (n = 169)
Evaluable for collagen (trichrome stain), n	42	38	52	132
Positive for collagen, n (%)	1 (2.4)	0	1 (1.9)	2 (1.5)
Evaluable for reticulin (silver stain), n	41	38	52	131
Reticulin increase by ≥ 2 grades, n (%)	2 (4.9)	1 (2.6)	4 (7.7)	7 (5.3)

ITP, immune thrombocytopenia; MF, marrow fibrosis (European Consensus scale) Brynes RK, et al. Acta Haematol. 2017;137:66–72

CURRENT CHALLENGES AND NOVEL TREATMENT OPTIONS IN ITP

Jerzy Windyga
David J. Kuter
Vickie McDonald

CASE: MR RUSSO

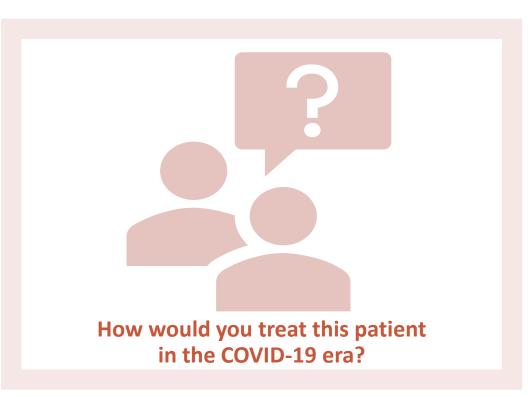
PART 1

PATIENT FROM A HIGH-RISK CORONAVIRUS AREA PRESENTS WITH ITP

53-year-old man presents with bleeding gums and generalised petechiae

History of episodes of bleeding gums and easy bruising, type 2 diabetes, and rheumatoid arthritis

Platelet count 16 x 10⁹/L
Other haematological and biochemical parameters and liver function tests normal


Recently visited family in northern Italy

CASE: MR RUSSO

PART 1

PATIENT FROM A HIGH-RISK CORONAVIRUS AREA PRESENTS WITH ITP

- 1. Is hospitalisation required?
- 2. What should be the first-line therapy?
- 3. Has COVID-19 changed the role of steroids in the treatment of ITP?
- 4. What can be done to minimize the number of hospital visits?

CASE: MR RUSSO

COR2ED°

PART 2

PATIENT DEVELOPS REFRACTORY ITP

3 years later, Mr Russo still regularly has bleeding gums, petechiae, and blood in stool, despite treatment with a TPO-RA

What novel treatment options are in the pipeline to treat a patient with refractory, chronic ITP?

WHAT NOVEL DRUGS ARE IN THE PIPELINE TO TREAT THIS PATIENT?

David J. Kuter

NOVEL THERAPIES FOR ITP

FcRn pathway inhibitors

Increase clearance of antiplatelet antibody

Anti-CD38 molecules

Inhibit plasma cells

Anti-CD40 ligand antibodies

Reduce production of antiplatelet antibody

Immunoproteasome inhibitor

Reduces antibody

Sialylated IgG

Blocks macrophage FcR

Stradomers

 Recombinant Fc multimers reduce phagocytosis

Bruton kinase inhibitors

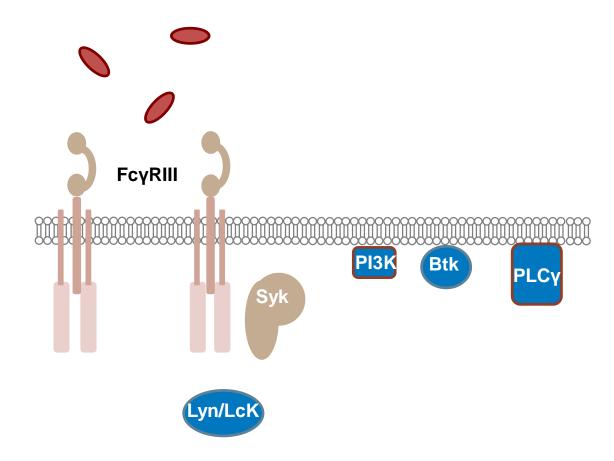
- Ibrutinib
- Rilzabrutinib (PRN1008)

Syk kinase inhibitors

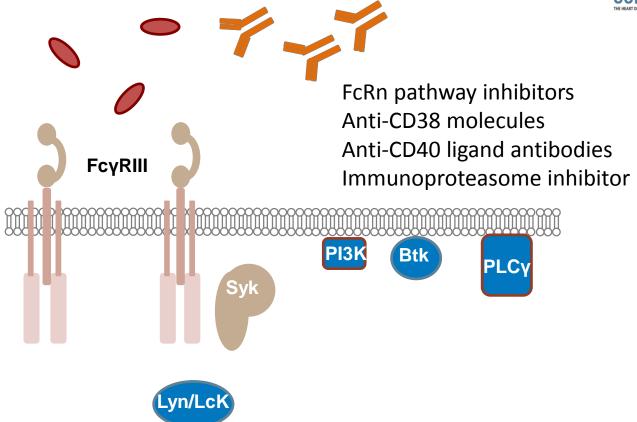
Fostamatinib

Complement inhibitor

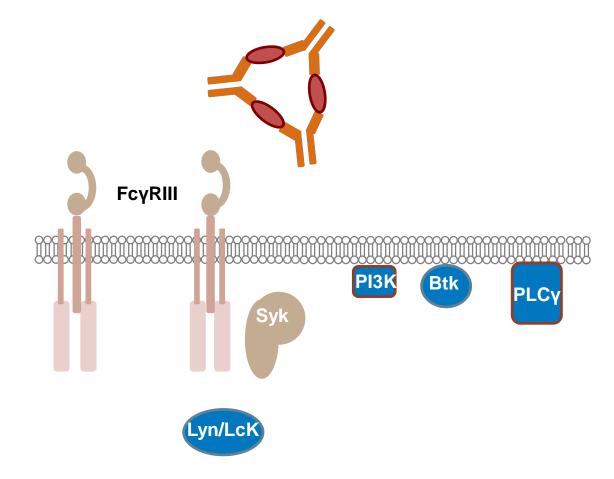
Antibody against C1s

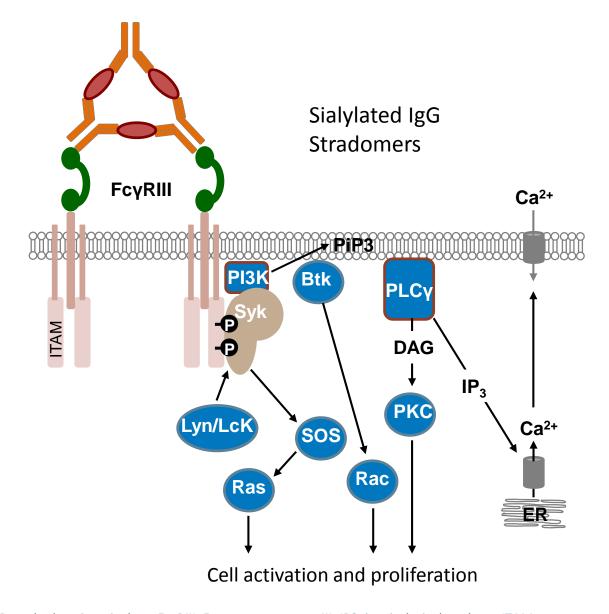

Recombinant TPO

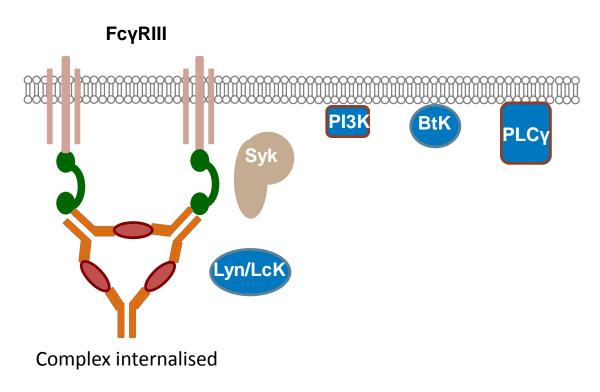
Use in pregnancy

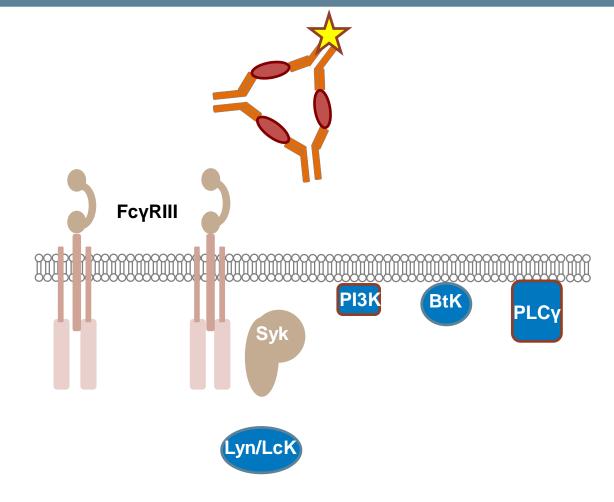

Low-level laser light

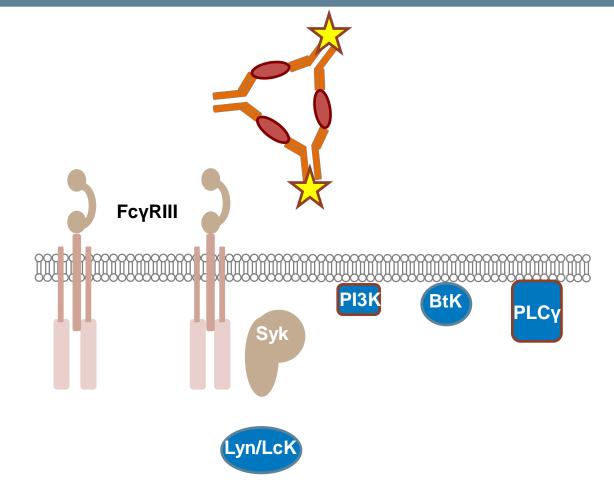
Prevents megakaryocyte apoptosis

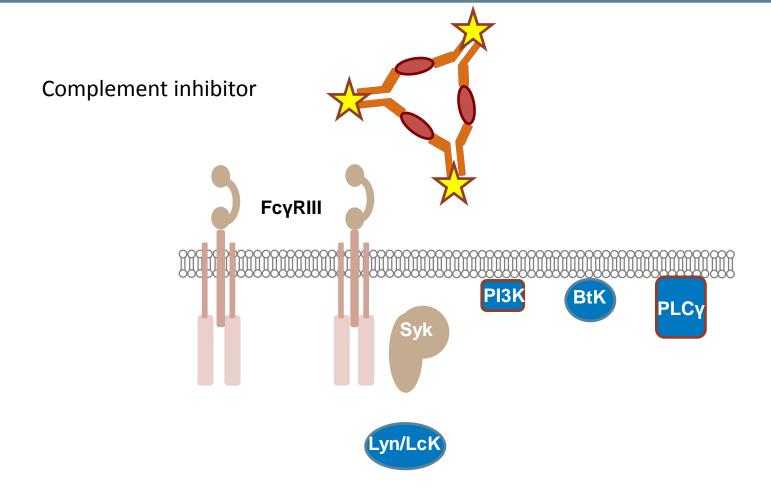


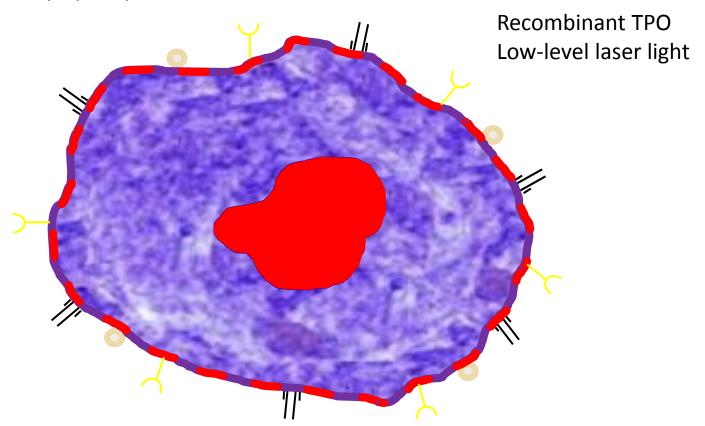





Btk, Bruton tyrosine kinase; ER, endoplasmic reticulum; FcγRIII, Fc gamma receptor III; IP3, inositol trisphosphate; ITAM, immunoreceptor tyrosine-kinase-based activation motifs; PiP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PI3K, phosphatidylinositol-3 kinase; PLCγ, phospholipase C gamma; Syk, spleen tyrosine kinase


Bruton kinase inhibitor Syk kinase inhibitors





- T- TPO Receptor
- Antiplatelet antibody
- Antiplatelet lymphocyte

- 1. Antiplatelet antibody attacks megakaryocyte
- 2. Lymphocyte attacks megakaryocyte
- 3. Megakaryocyte undergoes apoptosis

TPO, thrombopoietin

SUMMARY

SUMMARY

There is a range of medical options for the subsequent treatment of adults with primary ITP, including rituximab and TPO-RAs

TPO-RAs have shown compelling evidence of platelet response and reduced bleeding; recent data indicate TPO-RAs are as effective in early ITP as chronic ITP

TPO-RAs can induce a long-lasting immunological response, however no consensus currently exists on when and how to taper

Key AEs associated with TPO-RAs include thrombosis, autoantibody formation, rebound worsening of thrombocytopenia and increased bone-marrow reticulin

Unmet needs remain in this disease area, requiring further research and consensus; novel drugs are expected in the years to come

APPENDIX

ISTH 2020 ABSTRACTS ON THE TREATMENT OF CHRONIC ITP IN ADULTS

Abstracts are available at abstracts.isth

Abstract number	First author	Title Title
PB1316	J. Agnelli Giacchello	Megakaryocytic Hyperplasia in Bone Marrow Biopsy as a Novel Predictor of Response in Patients with Immune Thrombocytopenia
PB1318	D. Kuter	Phase I/II, Open-Label, Ongoing Study of PRN1008 (Rilzabrutinib), an Oral Bruton Tyrosine Kinase Inhibitor, in Patients with Heavily Pretreated Immune Thrombocytopenia (ITP)
PB1335	I. Altomare	Achieving Clinically Relevant Platelet Count Response Thresholds with Avatrombopag (AVA) in Immune Thrombocytopenia (ITP)
PB1343	J. Yamanouchi	Sustained Remission after Withdrawal of Thrombopoietin Receptor-Agonists in Immune Thrombocytopenia
PB1344	P. Zhao	Risk Stratification for Intracranial Hemorrhage in Adults with Immune Thrombocytopenia: A Retrospective Multicenter Study
PB1345	J. Gebhart	Factors Influencing Bleeding Severity in Adult Patients with Primary Immune Thrombocytopenia
PB1346	M. Stimpson	CD4+ T Cell Expression of IL-10 Compared to IL-17 is Lower in Patients with Immune Thrombocytopenia (ITP) Who Do Not Respond Clinically to High Dose Corticosteroid
PB1349	H. Maitland	Response to Avatrombopag (AVA) in Chronic Immune Thrombocytopenia: Alternative Efficacy Measures
PB1350	N. Gabrail	Pharmacokinetic/Phamacodynamic (PK/PD) Modeling Providing Guidance for Selecting Avatrombopag (AVA) Dose when Switching from Eltrombopag in Chronic Immune Thrombocytopenia (ITP)
PB1357	M. Marcosano	Long Term Complications after Splenectomy in Chronic pITP Patients: A Retrospective Case Control Study
PB1358	W. Ghanima	Fostamatinib as Second-Line Therapy for ITP and in Earlier Stage ITP Patients
PB1360	M.G. Mazzucconi	Randomized Study for the Treatment of Primary Immune Thrombocytopenic Purpura (pITP) in Newly Diagnosed Untreated Adult Patients. Comparison of Standard Dose Prednisone versus High-dose Dexamethasone. Preliminary Results. GIMEMA Protocol ITP0207
PB1363	M.G. Mazzucconi	Response Rate and Response Duration after Discontinuation of Treatment with Thrombopoietin Receptor Agonists (TPO-RAS) in Patients Affected by Primary Immune Thrombocytopenia (pITP): Retrospective Study. Preliminary Results. GIMEMA Protocol ITP0714
PB1378	M. Recht	Corticosteroid Reduction or Discontinuation after Initiation of Avatrombopag Treatment in Patients with Chronic Immune Thrombocytopenia (ITP)

COR2ED
Bodenackerstrasse 17
4103 Bottmingen
SWITZERLAND

Dr. Froukje Sosef MD

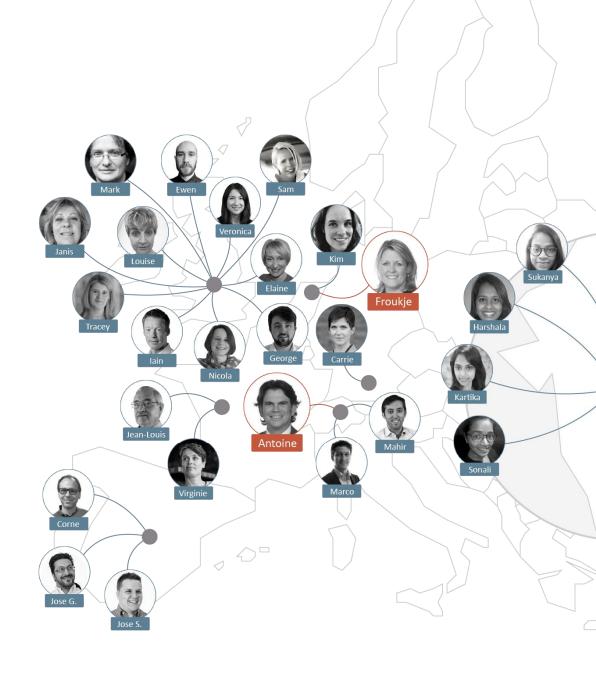
+31 6 2324 3636

froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

+41 79 529 42 79

antoine.lacombe@cor2ed.com



Connect on LinkedIn @COR2ED

Watch on Vimeo @COR2ED

