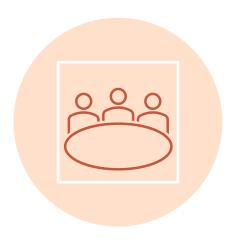


EXPERTS KNOWLEDGE SHARE

APPROPRIATE SELECTION OF PATIENTS FOR COMBINATION IMMUNOTHERAPY IN HCC: THE NOW AND THE NEXT

Prof. Peter Galle, Prof. Sammy Saab and Prof. Amit Singal

Tuesday, May 11th 2021


EXPERTS KNOWLEDGE SHARE

APPROPRIATE SELECTION OF PATIENTS FOR COMBINATION IMMUNOTHERAPY IN HCC: THE NOW AND THE NEXT

YOUR OPPORTUNITY TO DISCUSS AND SHARE LEARNINGS ON A CHALLENGING TOPIC WITHIN THE AREA OF HCC

A CHANCE TO HEAR THE VIEWS OF EXPERTS
AND ALLOW THEM TO ANSWER THE
QUESTIONS THAT ARE IMPORTANT TO YOU

REVIEW AND DISCUSS PATIENT CASE

STUDIES, USING THE QUESTIONS THAT YOU

HAVE SENT IN ADVANCE OF THIS EVENT

EXPERTS KNOWLEDGE SHARE EDUCATIONAL OBJECTIVES

To provide insights into the combination therapy for unresectable or advanced HCC patients, covering both approved therapies and those that are in clinical development

To define the HCC patient population who should benefit most from each available treatment option based on efficacy and safety profiles

To provide guidance on treatment sequencing

HCC, hepatocellular carcinoma 4

INTRODUCING THE SCIENTIFIC COMMITTEE

Peter Galle, MD, PhD

Department of Gastroenterology and Hepatology University Medical Center Mainz Mainz, Germany

Sammy Saab, MD

Department of Internal Medicine and Surgery Head, Outcomes Research in Hepatology David Geffen School of Medicine at UCLA

Amit Singal, MD, M.S

Department of Internal Medicine UT Southwestern Medical Center Dallas, USA

DISCLAIMER

This meeting is based on an independent medical educational grant from Bayer. The programme is therefore independent; the content is not influenced by Bayer and is the sole responsibility of the experts

Please note:

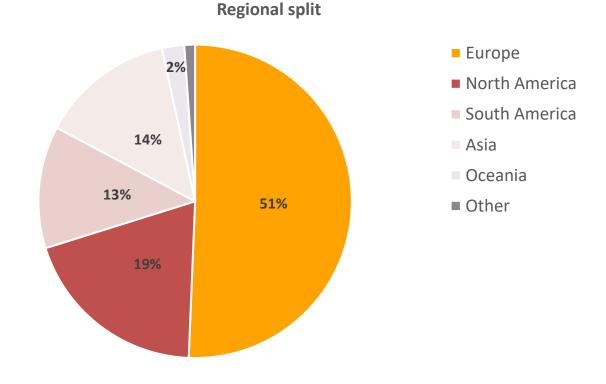
The views expressed within this presentation are the personal opinions of the experts. They do not necessarily represent the views of the experts' academic institutions or the rest of the faculty

EXTENDING THE REACH FOR THOSE NOT ABLE TO ATTEND TODAY

EXPERTS KNOWLEDGE SHARE AGENDA

Appropriate selection of patients for combination immunotherapy in HCC: the now and the next

Time	Topic	Facilitator
5 minutes	Welcome and introductions	Peter Wallich COR2ED
15 minutes	Treating advanced and unresectable HCC today	Peter Galle
15 minutes	Sequencing guidelines in advanced and unresectable HCC: where do we stand?	Amit Singal
15 minutes	Stratification of patients with HCC: who needs what?	Sammy Saab
5 minutes	Lead-in to break-out sessions	Mahir Karababa COR2ED
20 minutes	Three break-out sessions Groups discussing questions and case studies and sharing experience	All
10 minutes	A look to future treatments and closing remarks	Peter Galle
5 minutes	Close	Peter Wallich COR2ED


HCC, hepatocellular carcinoma 8

PRE-MEETING SURVEY RESPONSES

A GLOBAL AUDIENCE

- Over 30 countries represented, spanning all regions
- Hepatologists and Oncologists primarily (50%) but also Haematology (16%) and other specialties

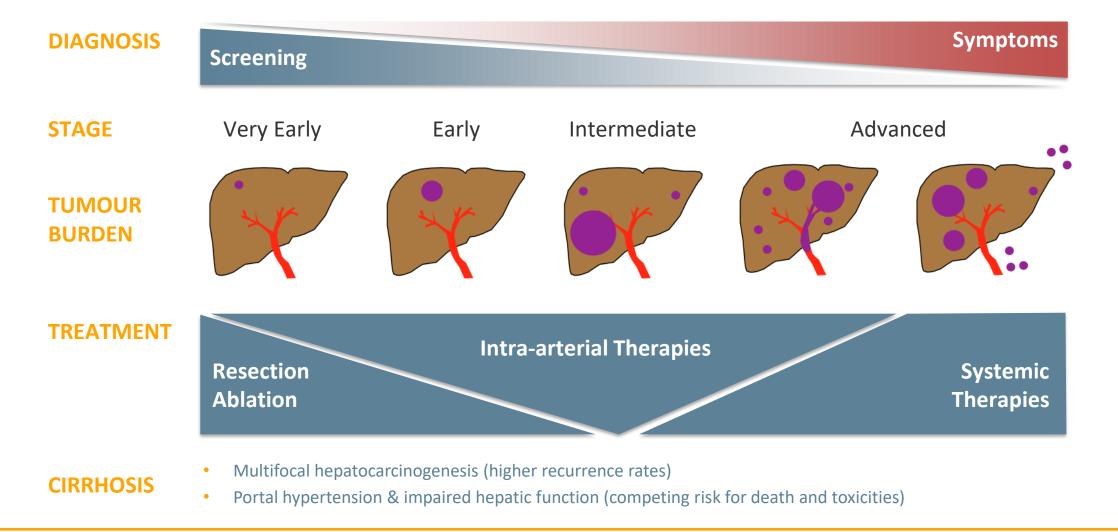
Source: Registrations (N=94) per 9 May 2021

EXPERTS KNOWLEDGE SHARE

TREATING ADVANCED AND UNRESECTABLE HCC TODAY

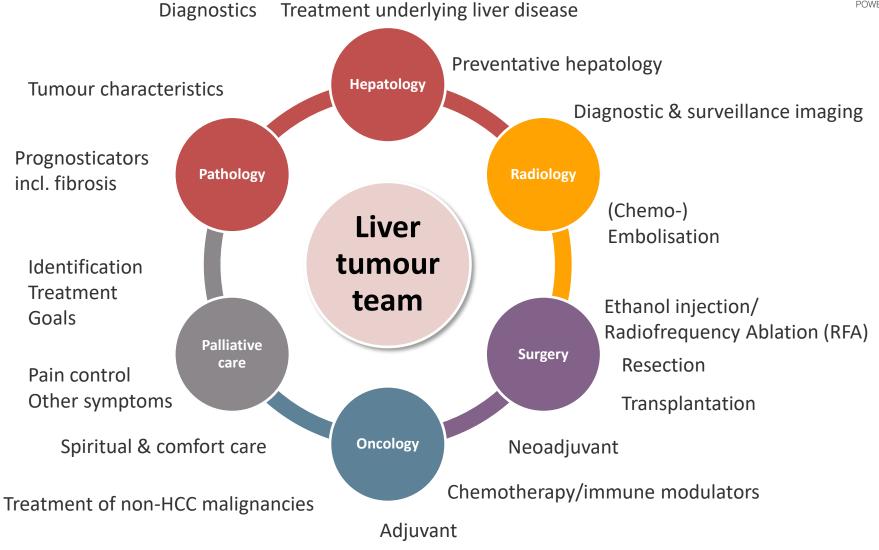
Prof. Peter Galle

Department of Gastroenterology and Hepatology University Medical Center Mainz, Mainz, Germany


DISCLOSURES

- Adaptimmune
- Bayer
- BMS
- AstraZeneca
- Sirtex
- MSD
- Eisai
- Ipsen
- Roche
- Lilly
- Guerbet

HEPATOCELLULAR CARCINOMA



Modifed from Sangro. ASCO GI 2019

MULTI-DISCIPLINARY TEAM APPROACH IN HCC PATIENTS

THE HCC SYSTEMIC TREATMENT LANDSCAPE HAS **RAPIDLY EVOLVED SINCE 2017**

First-line therapies

Nov 2007

Sorafenib

approved for patients with uHCC

Aug 2018

Lenvatinib

approved by the FDA and EMA for patients with uHCC based on the REFLECT study results^{4,5}

May/Nov 2020

Atezolizumab + bevacizumab

approved by the FDA, EMA, and others for patients with uHCC based on the IMbrave15012

Apr 2017

Regorafenib

approved for patients with HCC previously treated with sorafenib²

Sep 2017

Accelerated FDA approval of nivolumab* for patients with **HCC** previously treated with

sorafenib³

Nov 2018

Pembrolizumab[‡]

granted FDA accelerated approval for patients with HCC previously treated with sorafenib based on KEYNOTE-2246

Jan 2019

Cabozantinib

approved by both the EMA (Nov 2018) and FDA (Jan 2019) for patients with HCC previously treated with sorafenib based on CELESTIAL^{7,8}

May 2019

Ramucirumab[†]

approved by both the FDA (May 2019) and EMA (July 2019) for patients with HCC previously treated with sorafenib, with AFP levels ≥400 ng/mL based on REACH-29,10

Mar 2020

Nivolumab + **ipilimumab**

received accelerated approval by the FDA for patients with HCC previously treated with sorafenib based on CheckMate-040¹¹

Mar 2020

Camrelizumab

received NMPA approval for patients with HCC previously treated with sorafenib and/or oxaliplatin systemic chemotherapies based on a phase 2 study (NCT02989922)¹³

Second-line therapies

Negative phase 3 trials in gold text.

*CheckMate-459: Nivolumab did not achieve statistical significance for the primary endpoint of OS vs sorafenib¹⁹; †Patients with AFP ≥400 ng/mL; [‡] Pembrolizumab failed to significantly improve OS and PFS (co-primary endpoints) vs placebo in the phase 3 KEYNOTE-240 trial^{20,21}

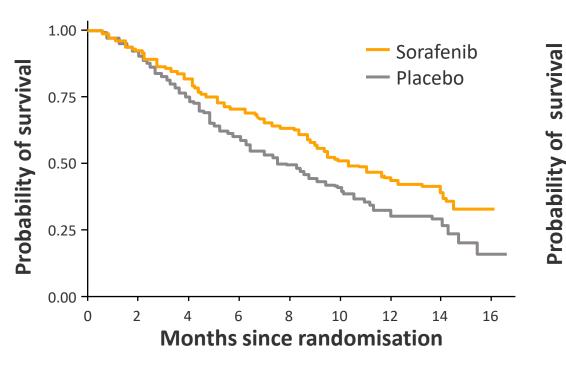
1. Nexavar (sorafenib) Full Prescribing Information. Bayer HealthCare Pharmaceuticals, Whippany, NJ. 2020 (accessed May 2020); 2. FDA regorafenib in HCC press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fd 20201: 4. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/AporovedDrugs/Junes/InformationOnDrugs/AporovedDrugs/Junes-Grants-Marketing-Authorization-for-LENVIMA-lenvatinib-as-First-Line-Treatment-in-Adults-with-Advanced-or-Unresectable-from: https://investors.merck.com/news/press-release-details/2018/Eisai-and-Merck-Announce-European-Commission-Grants-Marketing-Authorization-for-LENVIMA-lenvatinib-as-First-Line-Treatment-in-Adults-with-Advanced-or-Unresectable-from: https://investors.merck.com/news/press-release-details/2018/Eisai-and-Merck-Announce-European-Commission-Grants-Marketing-Authorization-for-LENVIMA-lenvatinib-as-First-Line-Treatment-in-Adults-with-Advanced-or-Unresectable-from: https://investors.merck.com/news/press-release-details/2018/Eisai-and-Merck-Announce-European-Commission-Grants-Marketing-Authorization-for-LENVIMA-lenvatinib-as-First-Line-Treatment-in-Adults-with-Advanced-or-Unresectable-from: https://www.fda.gov/Drugs/InformationOnDrugs/Approximation-for-LENVIMA-lenvatinib-as-First-Line-Treatment-in-Adults-with-Advanced-or-Unresectable-from: https://www.fda.gov/Drugs/InformationOnDrugs/Approxi Hepatocellular-Carcinoma/default.aspx (accessed May 2020); 6. FDA press release. Available from: https://www.ipsen.com/media/press-releases/post_custom_datacustom_da cabozantinib-for-the-treatment-of-hepatocellular-carcinoma-in/(accessed May 2020); 8. FDA press release. Available from: https://www.fda.gov/Drugs/frormation-approved-drugs/fda-approves-ramucirumab-hepatocellular-carcinoma-(accessed May 2020); 10. Cyramza (ramucirumab) EMA approval. EMA summary of opinion. Available from: <a href="https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-spurnous-in-tep-acu/en/documents/smop/chmp-post-authorisati

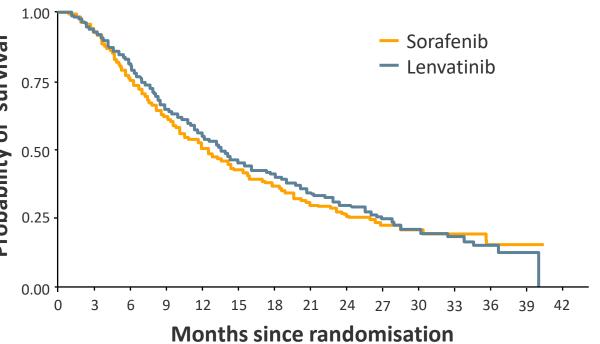
AFP, alpha-fetoprotein; EMA, European Medicines Agency; FDA, Food and Drug Administration; HCC, hepatocellular carcinoma; NMPA, National Medical Products Administration; OS, overall survival; PFS, progression-free survival; uHCC, unresectable HCC

1ST-LINE SYSTEMIC TREATMENT OPTIONS

- Sorafenib
- Lenvatinib
- Atezolizumab + bevacizumab

1ST-LINE TREATMENT OPTIONS: SORAFENIB AND LENVATINIB

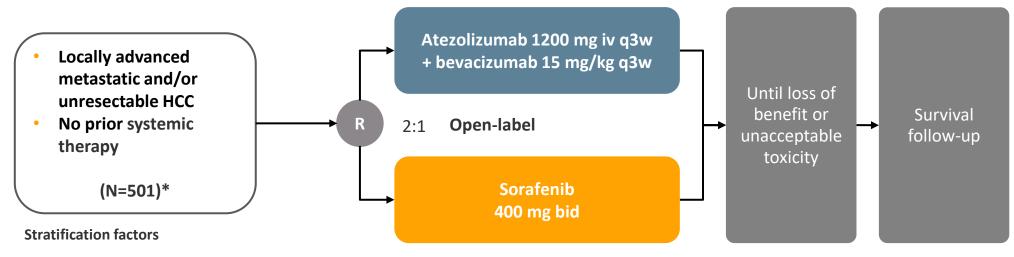



Overall survival in the SHARP trial¹

Median OS: 10.7 months sorafenib *vs* 7.9 months placebo HR 0.69 (95% CI 0.55-0.87), p<0.001¹

Overall survival in the REFLECT* trial²

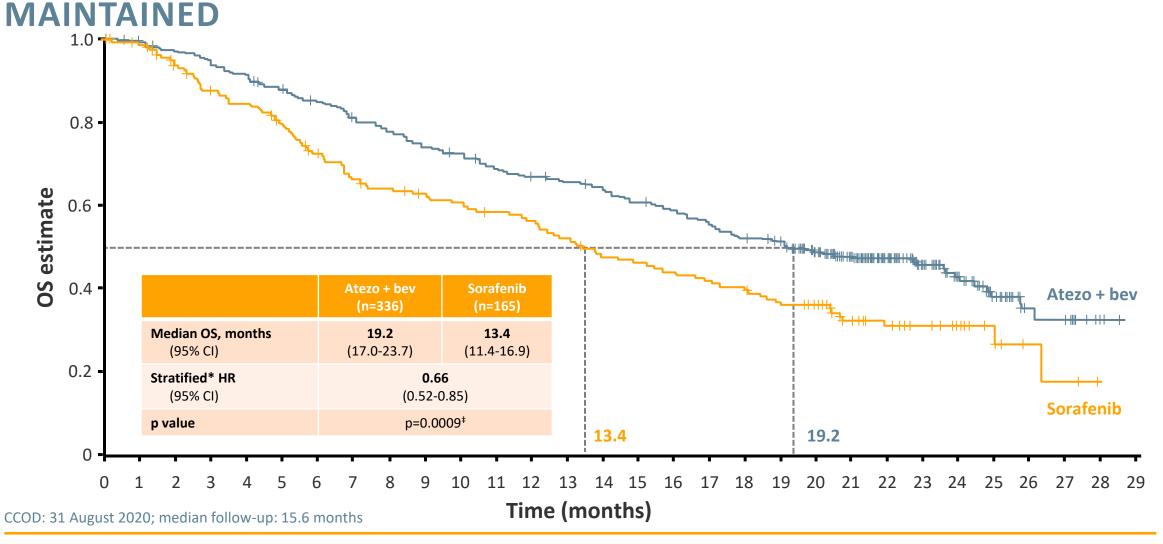
Median OS: 13.6 months lenvatinib vs 12.3 months sorafenib HR 0.92 (95% CI 0.79-1.06)²



^{*}REFLECT is a randomized phase 3 non-inferiority trial

IMBRAVE150 IS A PHASE III TRIAL OF 1L ATEZOLIZUMAB + BEVACIZUMAB IN PATIENTS WITH UNRESECTABLE HCC¹

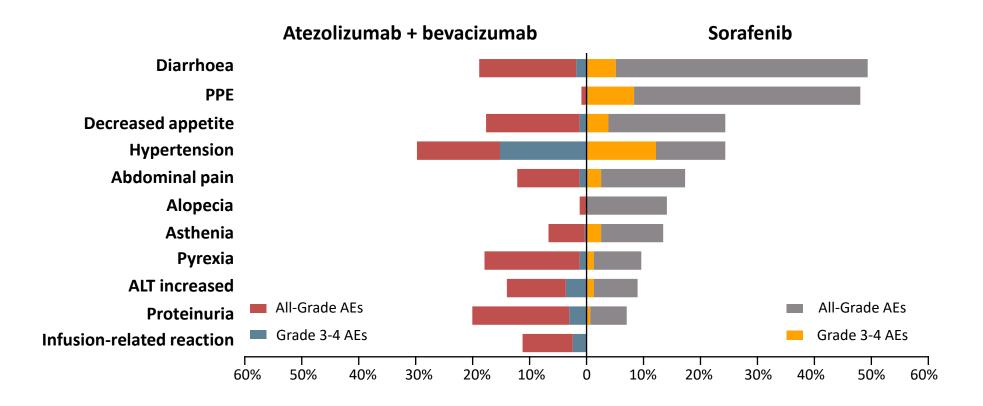
- Region (Asia excluding Japan[‡]/Rest of World)
- ECOG PS (0/1)
- MVI and/or EHS (presence/absence)
- **Baseline AFP** (<400/≥400 ng/ml)
- Co-primary endpoints: OS and PFS IRF-assessed per RECIST v1.1
- Key secondary endpoints (in testing strategy): ORR IRF-assessed per RECIST v1.1 and HCC mRECIST


^{*}There were an additional 57 Chinese patients in the China extension cohort that were not included in the global population/analysis; †Japan is included in Rest of World

1L, first-line; AFP, alpha-fetoprotein; bid, twice daily; ECOG PS, Eastern Cooperative Oncology Group Performance Status; EHS, extrahepatic spread; HCC, hepatocellular carcinoma; IRF, independent review facility; iv, intravenous; (m)RECIST, (modified) Response Evaluation Criteria in Solid Tumors; MVI, macrovascular invasion; ORR, objective response rate; OS, overall survival; q3w, every 3 weeks; PFS, progression-free survival.

1. Finn RS, et al. N Engl J Med. 2020;382:1894-905

UPDATED ANALYSIS: THE OS BENEFIT OBSERVED WITH ATEZOLIZUMAB + BEVACIZUMAB VS SORAFENIB WAS


^{*}Stratification factors included are geographic region (Asia excluding Japan vs RoW), AFP level (<400ng/mL vs ≥400ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS; †p value for descriptive purposes only

SAFETY

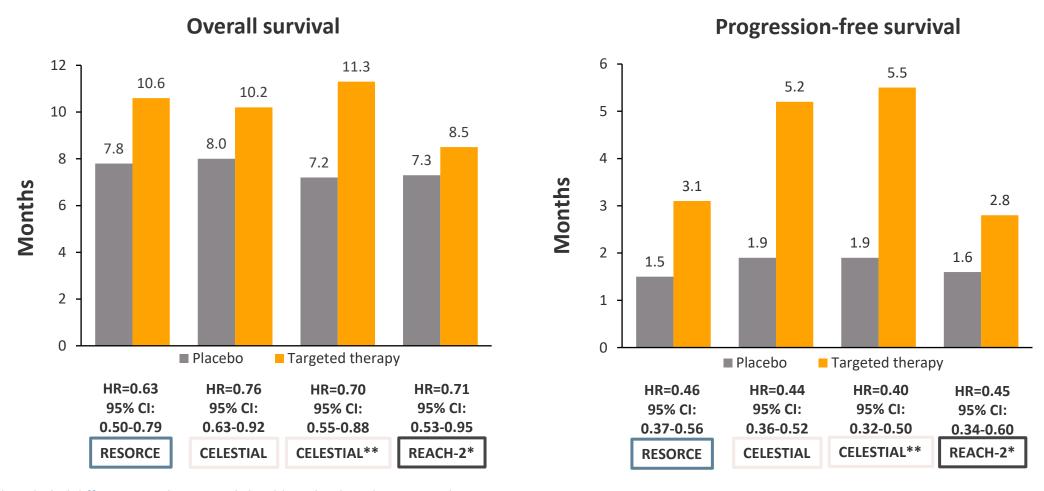
≥10% FREQUENCY OF AEs IN EITHER ARM AND >5% DIFFERENCE BETWEEN ARMS

Summary of adverse events

2ND-LINE SYSTEMIC TREATMENT OPTIONS

- Cabozantinib
- Regorafenib
- Ramucirumab
- Nivolumab
- Pembrolizumab
- Nivolumab + ipilimumab
- Camrelizumab

2ND-LINE TREATMENT OPTIONS: REGORAFENIB, CABOZANTINIB AND RAMUCIRUMAB*



	RESORCE ¹	CELESTIAL ^{2,3}	REACH-2 ⁴
Arms	Regorafenib vs placebo	Cabozantinib vs placebo	Ramucirumab vs placebo
Targets	VEGFR 1-3, RAF, KIT, RET, PDGFR, TIE 2, FGFR1	VEGFR, MET, AXL	VEGFR2
Class	TKI	TKI	mAb
Administration	Oral	Oral	IV
Previous treatment	Sorafenib	Sorafenib	Sorafenib
Reason for discontinuation of 1 st -line	Radiological progression	Progression or intolerance	Progression or intolerance
Line	2 nd	2 nd and 3 rd	2 nd
Biomarker	_	_	AFP ≥400 ng/mL

^{*}Trials included different populations and should not be directly compared

2ND-LINE TREATMENT OPTIONS: REGORAFENIB,¹ AND CABOZANTINIB^{2,3} AND RAMUCIRUMAB,⁴ VS PLACEBO

Trials included different populations and should not be directly compared

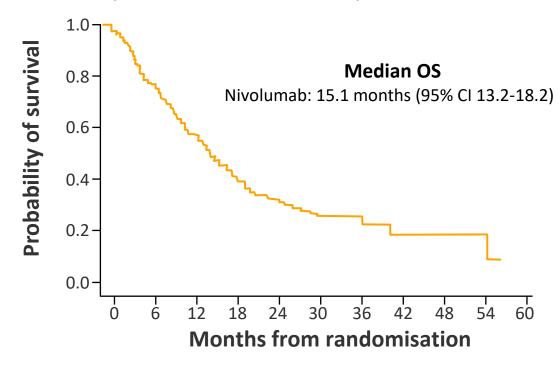
^{*}AFP high population; **Pure 2nd-line population

AFP, alpha-fetoprotein; CI, confidence interval; HR, hazard ratio

^{1.} Bruix J, et al. Lancet. 2017;389:56-66; 2. Abou-Alfa GK, et al. N Engl J Med. 2018;379:54-63; 3. Kelley RK, et al. J Clin Oncol. 2018;36(15 suppl):4088-4088;

^{4.} Zhu A, et al. Lancet Oncol. 2019;2:282-96

2ND-LINE TREATMENT OPTIONS: RESORCE, CELESTIAL AND REACH-2 SAFETY SUMMARY


	RESORCE ¹ (regorafenib)	CELESTIAL ² (cabozantinib)	REACH-2 ^{3,4} (ramucirumab)
Discontinuation due to TRAEs	10%	16%	11%
Dose modification due to AEs	68%	62%	35%
Median duration of treatment	3.6 months	3.8 months	2.8 months (AFP high)
Grade ≥3 TEAEs	67%	68%	59%
Skin reactions, hypertension, increased bilirubin, AST increase		Skin reactions, hypertension, AST increase, fatigue, diarrhoea	Hypertension

Trials included different populations and should not be directly compared

2ND-LINE TREATMENT OPTIONS: NIVOLUMAB – RESULTS OF CHECKMATE-040

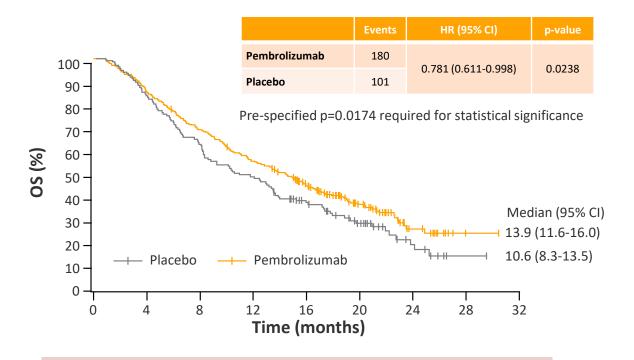
• This analysis of the Phase I/II study CheckMate-040 trial included 182 patients previously treated with sorafenib

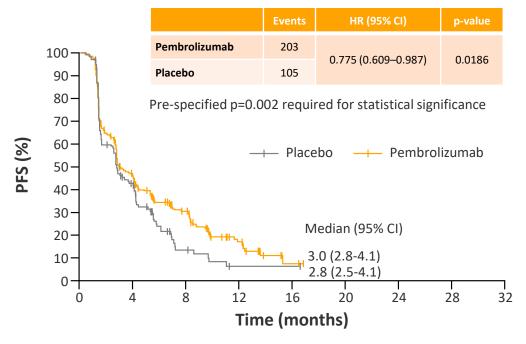
CheckMate-040 did not meet the requirements for EMA approval of 2nd-line nivolumab in the treatment of HCC*

Response, n (%)	Nivolumab (ITT) (n=182)
ORR	26 (14)
DCR	100 (55)

- Nivolumab had a manageable safety profile and no new signals were observed in patients with advanced HCC
- No maximum tolerated dose was found

Nivolumab has been granted accelerated FDA approval in 2nd-line based on the results of CheckMate-040^{2*}
In April 2021, FDA's Oncologic Drug Advisory Committee voted against the continued accelerated approval of nivolumab for the treatment of patients with HCC who were previously treated with sorafenib³

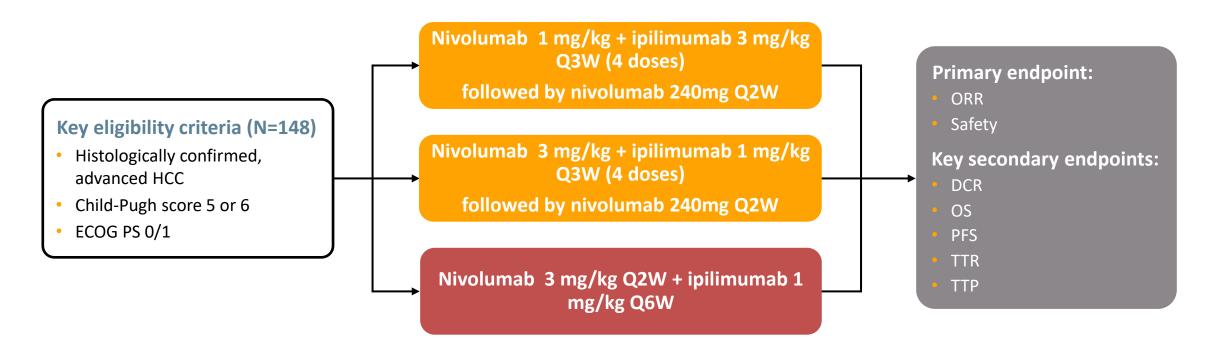

^{*}Approved by the FDA, but not currently approved by the EMA


CI, confidence interval; DCR, disease control rate; EMA, European Medicines Agency; FDA, Food and Drug Administration; HCC, hepatocellular carcinoma; ITT, intention-to-treat; ORR, objective response rate; OS, overall survival

^{1.} Yau T, et al. J Hepatol. 2019;71:543-52; 2. FDA Press release. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-hcc-previously-treated-sorafenib. Accessed May 2021; 3. https://www.fda.gov/media/147929/download. Accessed May 2021

2ND-LINE TREATMENT OPTIONS: PEMBROLIZUMAB – RESULTS OF KEYNOTE-240¹

KEYNOTE-240 did not meet the statistical criteria for either of the dual primary endpoints²


Pembrolizumab received accelerated FDA approval in patients previously treated with sorafenib based on the results of KEYNOTE-224^{3*}

^{*}Approved by the FDA, but not currently approved by the EMA

2ND-LINE TREATMENT OPTIONS: NIVOLUMAB + IPILIMUMAB - CHECKMATE-040^{1,2}

AIM: TO EVALUATE THE EFFICACY AND SAFETY OF 2L NIVOLUMAB + IPILIMUMAB IN SORAFENIB-TREATED PATIENTS WITH aHCC

²L, second-line; (a)HCC, (advanced) hepatocellular carcinoma; DCR, disease control rate; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q2W, every 2 weeks; Q3W, every 3 weeks; Q6W, every 6 weeks; TTP, time to progression; TTR, time to response

2ND-LINE TREATMENT OPTIONS: NIVOLUMAB + IPILIMUMAB - CHECKMATE-040

	Arm A Nivo1/Ipi3 Q3W (n=50)	Arm B Nivo3/Ipi1 Q3W (n=49)	Arm C Nivo3 Q2W/Ipi1 Q6W (n=49)	Total (N=148)
ORR, n (%)	16 (32)	15 (31)	15 (31)	46 (31)
Complete response	4 (8)	3 (6)	0	7 (5)
Partial response	12 (24)	12 (24)	15 (31)	39 (26)
Stable disease	9 (18)	5 (10)	9 (18)	23 (16)
Progressive disease	20 (40)	24 (49)	21 (43)	65 (44)
Unable to determine	3 (6)	4 (8)	4 (8)	11 (7)
DCR, n (%)	27 (54)	21 (43)	24 (49)	72 (49)
Median TTR, months (range)	2.0 (1.1-2.8)	2.6 (1.2-5.5)	2.7 (1.2-8.7)	_
Median DoR, months (range)	17.5 (4.6-30.5+)	22.2 (4.2-29.9+)	16.6 (4.1+-32.0+)	-
ORR by investigator, n (%)	16 (32)	13 (27)	14 (29)	_

Nivolumab plus ipilimumab led to robust and durable responses in sorafenib-treated patients, with higher ORRs (>30% in each treatment arm) than the ORR observed with nivolumab monotherapy (14%)

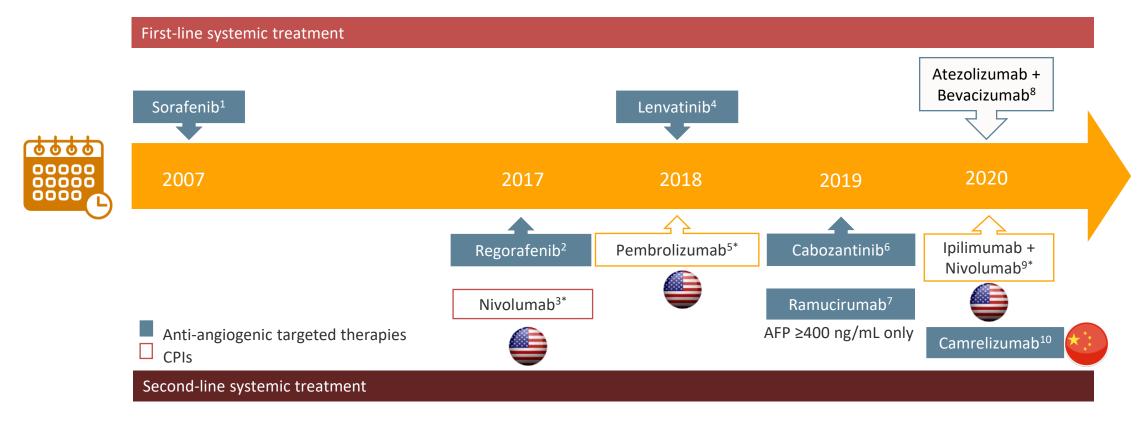
The nivolumab plus ipilimumab combination led to clinically meaningful responses and had an acceptable safety profile in patients with previous exposure to sorafenib

2ND-LINE TREATMENT OPTIONS: CAMRELIZUMAB (ANTI-PD-1 INHIBITOR)

OPEN-LABEL CHINESE MULTICENTER PHASE 2 STUDY (NCT02989922): 217 EVALUABLE PRETREATED PATIENTS WITH ADVANCED HCC WERE RANDOMLY ASSIGNED BETWEEN NOVEMBER 2016 AND NOVEMBER 2017 TO RECEIVE CAMRELIZUMAB AT 3 MG/KG EVERY 2 WEEKS (N=109) OR EVERY 3 WEEKS (N=108)

Cut off date: 16 November 2018	All treated patients (n=217)	Every 2 weeks (n=109)	Every 3 weeks (n=108)
Primary endpoints			
BICR-assessed objective response*, n (%, 95% CI)	32 (14.7%; 10.3-20.2)	13 (11.9%; 6.5-19.5)	19 (17.6%; 10.9-26.1)
6-month overall survival**, % (95% CI)	74.4% (68.0-79.7)	75.9% (66.6-82.9)	73.0% (63.6-80.4)
Secondary endpoints			
Disease control, n (%, 95% CI)	96 (44.2%; 37.5-51.1)	52 (47.7%; 38.1-57.5)	44 (40.7%; 31.4-50.6)
Median time to response, months (IQR)	2.0 (1.9-3.4)	2.0 (1.9-2.0)	2.1 (2.0-3.5)
Median duration of response, month (IQR)	NR (3.7-14.0)	NR (2.9-12.5)	NR (4.1-14.5)
Median OS, months (95% CI)	13.8 (11.5-16.6)	14.2 (11.5-NR)	13.2 (9.4-17.0)

Camrelizumab
showed antitumour
activity in
pretreated Chinese
patients with
advanced HCC,
preliminary survival
benefit and a
manageable safety
profile


^{*}Defined as the percentage of patients whose best overall response was confirmed complete or partial response; **Defined as cumulative overall survival at 6 months from the first dose

CLOSING REMARKS

THE EVOLVING LANDSCAPE OF SYSTEMIC TREATMENT FOR HCC

^{*}Approved by the FDA, but not currently approved by the EMA

AFP, alpha-fetoprotein; CPI, checkpoint inhibitor; EMA, European Medicines Agency; FDA, Food and Drug Administration; HCC, hepatocellular carcinoma

www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma. Accessed August 2020.

^{1.} Nexavar Press release. Available at: www.drugs.com/nda/nexavar_070820.html. Accessed August 2020; 2. Regorafenib Press release. Available at: www.cancer.gov/news-events/cancer-currents-blog/2017/fda-regorafenib-liver. Accessed August 2020; 3. Opdivo Press release. Available at: www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-hcc-previously-treated-sorafenib. Accessed August 2020; 4. Lenvatinib Press release. Available at: www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lenvatinib-unresectable-hepatocellular-carcinoma. Accessed August 2020; 5. Pembrolizumab Press release. Available at: www.fda.gov/drugs/fda-approvel-pembrolizumab-hepatocellular-carcinoma. Accessed August 2020; 7. Cyramza Press release. Available at: https://investor.lilly.com/news-releases/news-release-details/lillys-cyramzar-ramucirumab-becomes-first-fda-approved-biomarker. Accessed August 2020; 8. FDA Press release. Available at: www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-plus-bevacizumab-unresectable-hepatocellular-carcinoma. Accessed August 2020. 9. FDA Press release. Available at:

EXPERTS KNOWLEDGE SHARE

SEQUENCING GUIDELINES IN ADVANCED AND UNRESECTABLE HCC: WHERE DO WE STAND?

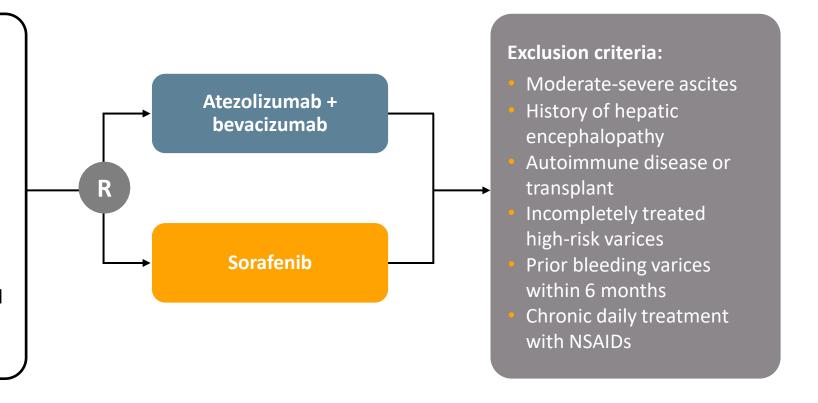
Prof. Amit Singal

Department of Internal Medicine
UT Southwestern Medical Center
Dallas, USA

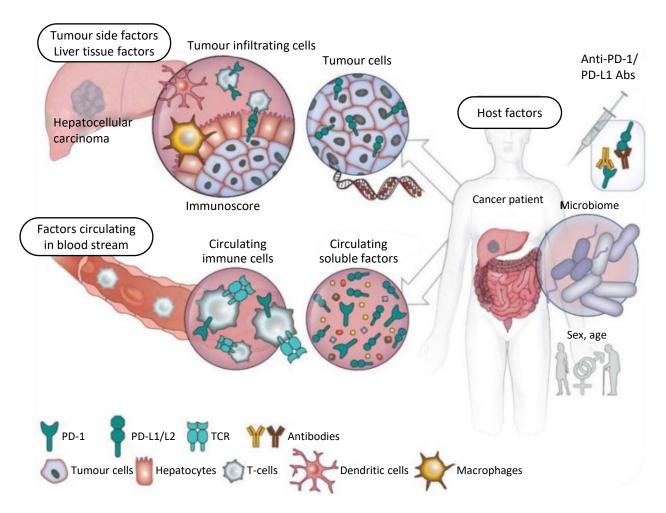
DISCLOSURES

- Bayer
- Eisai
- Genentech
- AstraZeneca
- Exelixis
- BMS

SUMMARY OF NCCN: RECOMMENDATIONS


First-Line Therapy	Subsequent-Line Therapy	
Preferred Regimens	Sorafenib	
 Atezolizumab + bevacizumab 	 Lenvatinib 	
 Sorafenib 	 Regorafenib 	
 Lenvatinib 	 Cabozantinib 	
	 Ramucirumab 	
Useful in Certain Circumstances	 Nivolumab 	
 Nivolumab 	 Pembrolizumab 	
	Nivolumab + ipilimumab	

ATEZOLIZUMAB/BEVACIZUMAB WILL BE PREFERRED IN MOST BUT NOT ALL PATIENTS


Key eligibility criteria:

- Locally advanced or metastatic and/or unresectable HCC
- No prior systemic therapy for HCC
- ≥1 measurable untreated lesion
- ECOG PS 0 or 1
- Adequate hematologic and end-organ function
- Child—Pugh class A

SEVERAL TREATMENT RESPONSE BIOMARKERS OF INTEREST

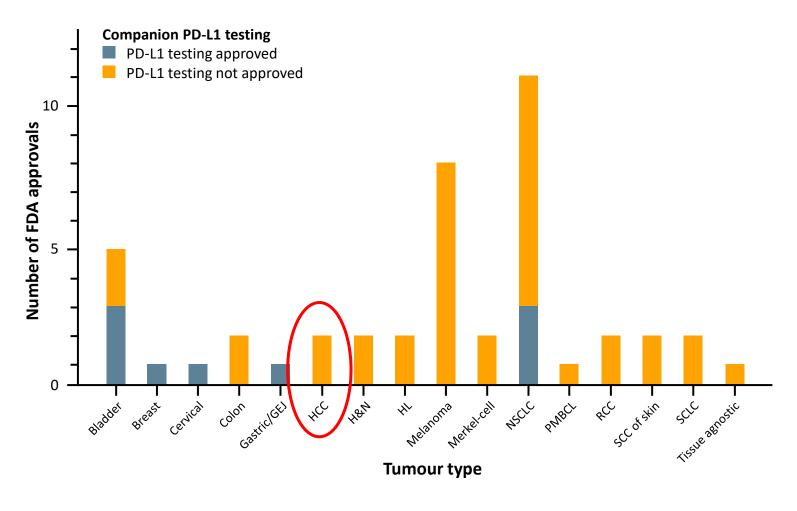
Tumour and Immunologic Factors

- PD-L1 expression by tumour and immune infiltrate
- Features of intra-tumoural lymphoid infiltrates

Tumour mutations and microsatellite instability

- Tumour mutation burden
- MSI-high status

Circulating factors


- Circulating immune cells
- Circulating soluble factors, e.g. TGF-B
- Extracellular vesicles, such as exosomes

Host factors

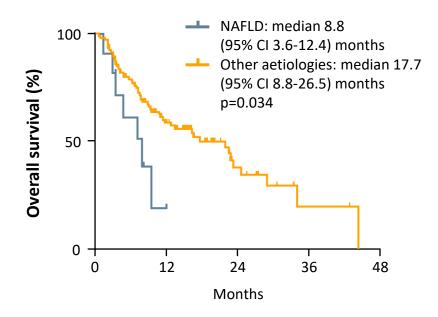
- Male sex and older age
- Gut microbiome

PD-L1: ROLE AS A TREATMENT RESPONSE BIOMARKER

- Among 45 approvals thru April 2019:
 - PD-L1 predictive in 28.9%
 - PD-L1 not predictive in 53.3%
 - PD-L1 not tested in 17.8%
- Heterogeneity in threshold, types of cells expressing PD-L1 (tumour infiltrating cells, tumour cells, or composite score) and companion diagnostics
- MSI has also been approved, albeit rare in HCC

FDA, Food and Drug Administration; GEJ, gastro-esophageal junction; H&N, head and neck; HCC, hepatocellular carcinoma; HL, Hodgkin's Lymphoma; MSI, microsatellite instability; NSCLC, non-small cell lung cancer; PD-L1, programmed cell death ligand 1; PMBCL, primary mediastinal B-cell lymphoma; RCC, renal cell carcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer

TKIS HIT DIFFERENT TARGETS BUT DOES NOT TRANSLATE TO PRACTICE


ТКІ	Therapy Line	VEGFA	VEGFR1	VEGFR2	VEGFR3	PDGFB	Other
Bevacizumab*	1 st Line	X					
Sorafenib	1 st Line		X	X	X	X	BRAF, FLT3, c-Kit, FGFR1
Lenvatinib	1 st Line		X	X	X	X	FGFR1, Kit
Regorafenib	2 nd Line		X	X	X	X	BRAF, Ret, Kit
Cabozantinib	2 nd Line			X		X	c-Met, Ret, Kit, Flt-1/3/4, Tie2, and AXL
Ramucirumab	2 nd Line			Х			

^{*}bevacizumab is approved in combination with atezolizumab for the treatment of patient with HCC in first line.

IS CIRRHOSIS ETIOLOGY ASSOCIATED WITH RESPONSE TO IMMUNE CHECKPOINT INHIBITORS?

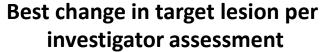
	Study	HR (95% CI)	HR ± 95% CI	Immunotherapy N	Control N
Non-viral	CheckMate-459	0.95 (0.74-1.22)	_	168	168
HCC	IMbrave150	0.91 (0.52-1.59)		100	53
	KEYNOTE-240	0.88 (0.64-1.21)		163	85
	Subtotal	0.92 (0.77-1.11)		431	306
Viral	CheckMate-459	0.74 (0.58-0.94)		- 203	203
HCC	IMbrave150	0.48 (0.33-0.70)		236	112
	KEYNOTE-240	0.70 (0.42-1.17)	-	115	50
	Subtotal	0.64 (0.48-0.84)		554	365
	Test for subgroup of $\chi^2 = 4.58$, d.f. = 1 (p				
	Total	0.77 (0.63-0.94)		985	671
			0.2 0.5 Favours immunotherap	1.0 2.0 Favours conti	rol

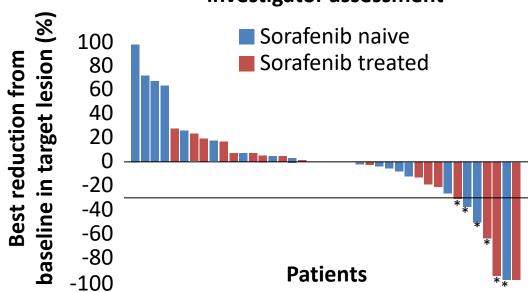
• In preclinical HCC models in the setting of NASH, PD-1 inhibitors expanded CD8⁺ T-cells but did not induce tumour regression, indicating impaired tumour immune surveillance

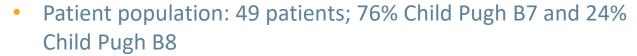
CLINICAL FACTORS CAN HELP SELECT BETWEEN SORAFENIB AND LENVATINIB

	Sorafenib	Lenvatinib
Level of evidence	Phase 3	Phase 3
Inclusion criteria	Child A cirrhosis, ECOG 0-1	Child A cirrhosis, ECOG 0-1 Excluded patients with >50% liver involvement, main portal vein or bile duct invasion
Efficacy	Improved survival vs placebo	Non-inferior survival vs sorafenib Improved objective responses and time to progression compared to sorafenib
AE profile	Increased hand-foot skin reaction	Increased hypertension, proteinuria, anorexia
Logistics	Oral, twice daily Taken 1-2 hours removed from food	Oral, once daily Can be taken with or without food
Miscellaneous	Real-world effectiveness data in populations including Child B cirrhosis	

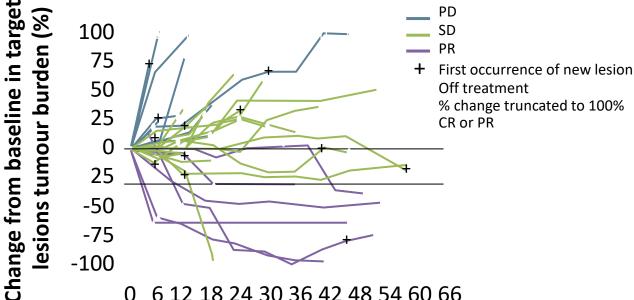
GIDEON PROVIDES REAL-WORLD DATA FOR SORAFENIB



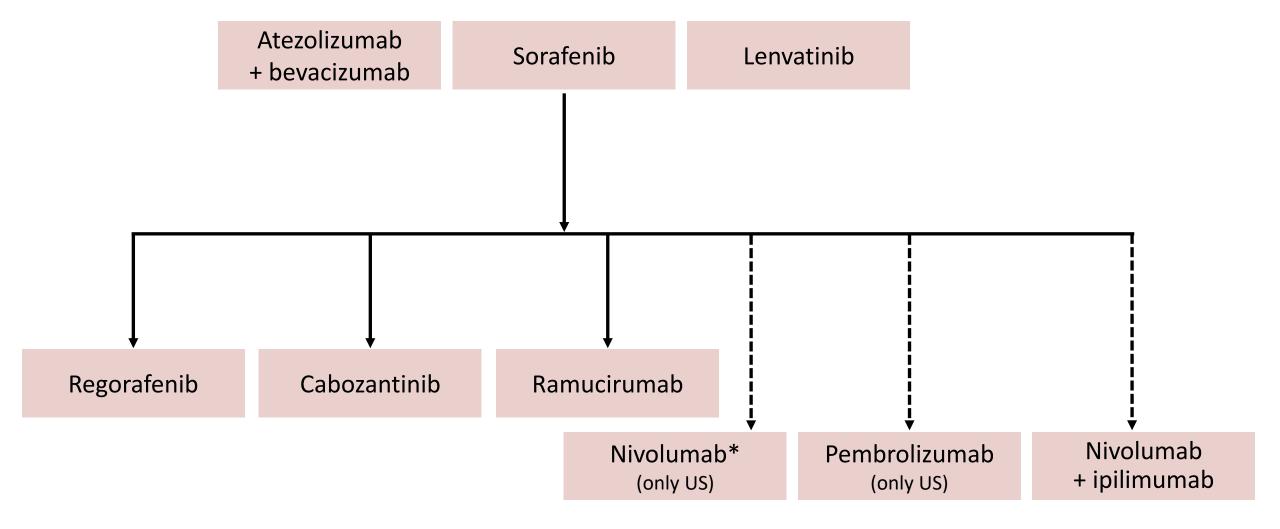

	Child-Pugh A (N=1,968)	Child-Pugh B (N=666)	Child-Pugh C (N=74)
Median treatment duration,* weeks	17.6	9.9	5.6
Initial dose, n (%) 800 mg 400 mg	1,415 (72) 482 (25)	464 (70) 173 (26)	46 (62) 21 (28)
Dose reduction rate, n (%)	784 (40)	194 (29)	19 (26)
AEs (all grades), n (%)	1,653 (84)	590 (89)	68 (92)
All grade 3 or 4 AEs, n (%)	638 (33)	210 (32)	13 (18)


^{*}Three patients recorded as having Child-Pugh B but specific score not recorded AE, adverse event Marrero JA, et al. J Hepatol. 2016;65(6):1140-7

CHECKMATE-040: NIVOLUMAB IN CHILD-PUGH B COHORT



- TRAEs manageable and not higher vs Child-Pugh A cohort
- ORR 10.2%; mOS 7.6 months; mOS in sorafenib-naïve and previously treated patients 9.8 and 7.4 months

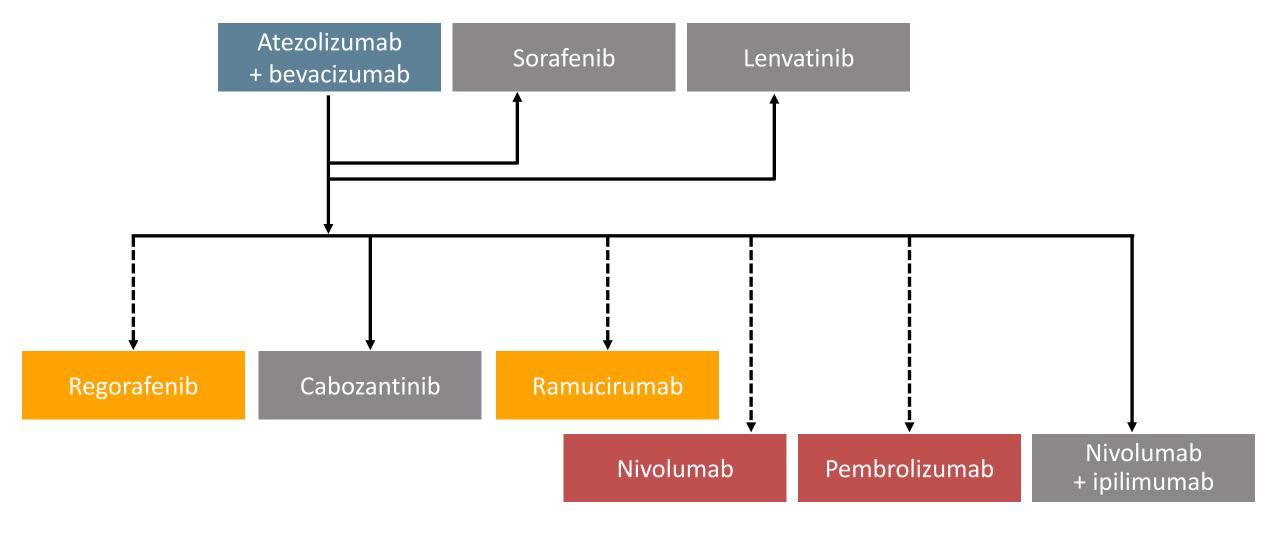

0 6 12 18 24 30 36 42 48 54 60 66 Weeks Since First Treatment Date

- The phase 3 CheckMate-459 (NCT02576509) did not show significant benefit of nivolumab over sorafenib
- FDA recommended to remove the accelerated approval of nivolumab for the treatment of HCC in 2nd line*

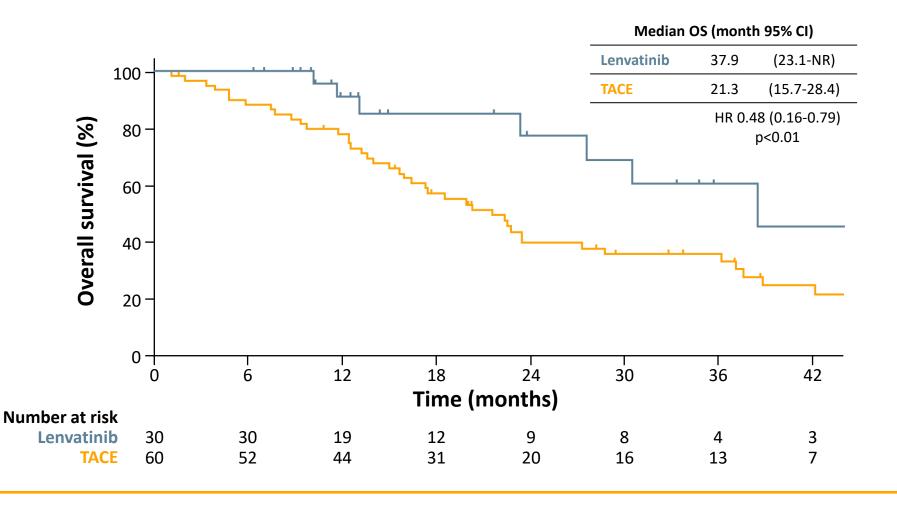
^{*}https://www.fda.gov/media/147929/download. Accessed May 2021.

MULTIPLE SECOND-LINE TREATMENT OPTIONS AFTER SORAFENIB

^{*}In April 2021, FDA recommended rescinding nivolumab approval in 2nd line HCC treatment (Source: https://www.fda.gov/media/147929/download. Accessed May 2021).


DIFFERENCES IN SECOND-LINE TARGETED TREATMENT OPTIONS (EXPERT COMMENTS)

	Regorafenib	Cabozantinib	Ramucirumab
Level of evidence	Phase 3	Phase 3	Phase 3
Inclusion criteria	 Tolerated sorafenib but with radiographic progression 	 Intolerant to sorafenib or with radiographic progression Could have received an additional line of systemic therapy 	 Intolerant to sorafenib or with radiographic progression Patients with AFP ≥400 ng/mL
Efficacy	 Improved OS 	 Improved OS 	 Improved OS
AE profile	 Similar to AE profile of other TKIs 	 Similar to AE profile of other TKIs 	 Well tolerated with low rates of dose reductions or discontinuations
Logistics	 Orally daily for 3 weeks with 1-week holiday 	Orally once daily	• IV infusion every 2 weeks


CAN THEY BE APPLIED AFTER ATEZOLIZUMAB AND BEVACIZUMAB?

ABILITY TO SEQUENCE REQUIRES STARTING SYSTEMIC THERAPY AT THE APPROPRIATE TIME

SUMMARY

- Interest in precision medicine and identifying best therapy for each patient
- Given a lack of proven biomarkers, we must rely on clinical factors to determine optimal therapies and sequencing strategies
- Although atezolizumab/bevacizumab should be first-line systemic therapy in most patients, there are
 patient population who will continue to receive TKI therapy
- TKIs could play an important role in second line after atezolizumab and bevacizumab
- Patient population with unique algorithms including patients with Child B, high risk of bleeding, or post-transplant
- Sequencing starts with transition from LRT to systemic therapy

EXPERTS KNOWLEDGE SHARE

STRATIFICATION OF PATIENTS WITH HCC: WHO NEEDS WHAT?

Sammy Saab, MD, MPH, AGAF, FACG, FAASLD

Professor of Medicine and Surgery
Head, Outcomes Research in Hepatology
David Geffen School of Medicine at UCLA

DISCLOSURES

- AbbVie
- BMS
- Bayer
- Gilead
- Eisai
- Exilisi
- Intercept
- Dova
- Saliix

IMPACT OF CIRRHOSIS ON THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA (HCC)

- Cirrhosis independently associated with survival
 - Dealing with two disorders: cirrhosis and HCC
- Certain causes of cirrhosis can reactivate during treatment of HCC
- Patients with cirrhosis can have unique complications not seen in patients with other cancers
 - Manifestations of portal hypertension
 - Drug toxicity
- Patients with cirrhosis require additional preparatory work prior to the treatment of HCC
 - Variceal endoscopy

EVALUATION PRIOR TO STARTING HCC SYSTEMIC THERAPY

Laboratory tests

- CBC with platelets
- Complete Metabolic Panel
- Prothrombin time/INR
- HBsAg
- HBcAb
- Urine analysis
- TSH
- AFP

Other

Upper endoscopy

AVAILABLE SYSTEMIC THERAPIES*

Sequence	Agent	Administration	Class
First Line	Sorafenib	Oral	Tyrosine Kinase Inhibitor
	Lenvatinib	Oral	VEGF Inhibitor
	Bevacizumab**	Injection	VEGF Inhibitor
	Atezolizumab**	Injection	PD-L1 Inhibitor
Second Line	Regorafenib	Oral	Tyrosine Kinase Inhibitor
	Cabozantinib	Oral	Tyrosine Kinase Inhibitor
	Nivolumab	Injection	PD-1 Inhibitor
	Pembrolizumab	Injection	PD-1 Inhibitor
	Ramucirumab***	Injection	VEGFR2 inhibitor

^{*}nivolumab + ipilimumab combination is not mentioned as this slide will support the illustration of treatment selection by patient population. **Bevacizumab/atezolizumab are used in combination; *** for HCC patients with AFP levels ≥400 ng/mL

CLASSIFICATION OF CIRRHOSIS SEVERITY DETERMINANTS FOR CHILD-TURCOTTE-PUGH (CTP)

	Points			
	1	2	3	
Encephalopathy	None	Grade 1-2 (or precipitant-induced)	Grade 3-4 (or chronic)	
Ascites	None	Mild/Moderate (diuretic-responsive)	Severe (diuretic-refractory)	
Bilirubin (mg/dL)	<2	2-3	>3	
Albumin (g/dL)	>3.5	2.8-3.5	<2.8	
Prothrombin time (seconds prolonged)	<4	4-6	>6	

Total Numerica Score	ol Child-Pugh Class
5-6 -	A
7-9 –	— В
10-15 -	С

Patients in Class A are considered "compensated"

Patients in Classes B and C are considered "decompensated"

RECOMMENDED SYSTEMIC HCC THERAPIES FOR: PATIENTS WITH CHILD-CLASS B CIRRHOSIS

Sequence	Agent	Administration	Class
First Line	Sorafenib	Oral	Tyrosine Kinase Inhibitor
Second Line			
	Nivolumab	Injection	PD-1 Inhibitor

HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2

Source: NCCN Guidelines. Hepatobiliary Cancers. V2.2021. Issued April 16, 2021

^{**}Bevacizumab/atezolizumab are used in combination; *** for HCC patients with AFP levels ≥400 ng/mL

RECOMMENDED SYSTEMIC HCC THERAPIES FOR: TRANSPLANT RECIPIENTS OR IMMUNE CONTRAINDICATIONS

Sequence	Agent	Administration	Class
First Line	Sorafenib	Oral	Tyrosine Kinase Inhibitor
	Lenvatinib	Oral	VEGF Inhibitor
Second Line	Regorafenib	Oral	Tyrosine Kinase Inhibitor
	Cabozantinib	Oral	Tyrosine Kinase Inhibitor
	Ramucirumab***	Injection	VEGFR2 inhibitor

^{**}Bevacizumab/atezolizumab are used in combination; *** for HCC patients with AFP levels ≥400 ng/mL HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2

RECOMMENDED SYSTEMIC HCC THERAPIES FOR: INTOLERANT TO SORAFENIB

Sequence	Agent	Administration	Class
First Line			
	Lenvatinib	Oral	VEGF Inhibitor
	Bevacizumab**	Injection	VEGF Inhibitor
	Atezolizumab**	Injection	PD-L1 Inhibitor
Second Line			
	Cabozantinib	Oral	Tyrosine Kinase Inhibitor
	Nivolumab	Injection	PD-1 Inhibitor
	Pembrolizumab	Injection	PD-1 Inhibitor
	Ramucirumab***	Injection	VEGFR2 inhibitor

Source: NCCN Guidelines. Hepatobiliary Cancers. V2.2021. Issued April 16, 2021

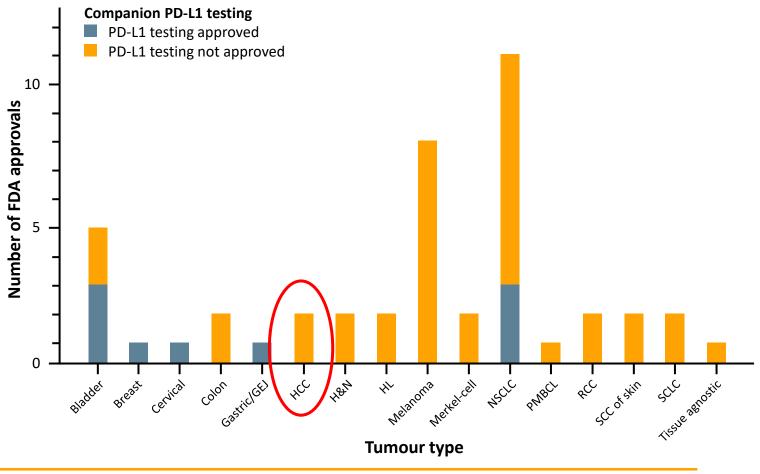
^{**}Bevacizumab/atezolizumab are used in combination; *** for HCC patients with AFP levels ≥400 ng/mL HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2

RECOMMENDED SYSTEMIC HCC THERAPIES FOR: MAIN PORTAL VEIN HCC INVASION

Sequence	Agent	Administration	Class
First Line	Sorafenib	Oral	Tyrosine Kinase Inhibitor
	Bevacizumab**	Injection	VGEF Inhibitor
	Atezolizumab**	Injection	PD-L1 Inhibitor
Second Line	Regorafenib	Oral	Tyrosine Kinase Inhibitor
	Cabozantinib	Oral	Tyrosine Kinase Inhibitor
	Nivolumab	Injection	PD-1 Inhibitor
	Pembrolizumab	Injection	PD-1 Inhibitor
	Ramucirumab***	Injection	VEGFR2 inhibitor

^{**}Bevacizumab/atezolizumab are used in combination; *** for HCC patients with AFP levels ≥400 ng/mL HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2

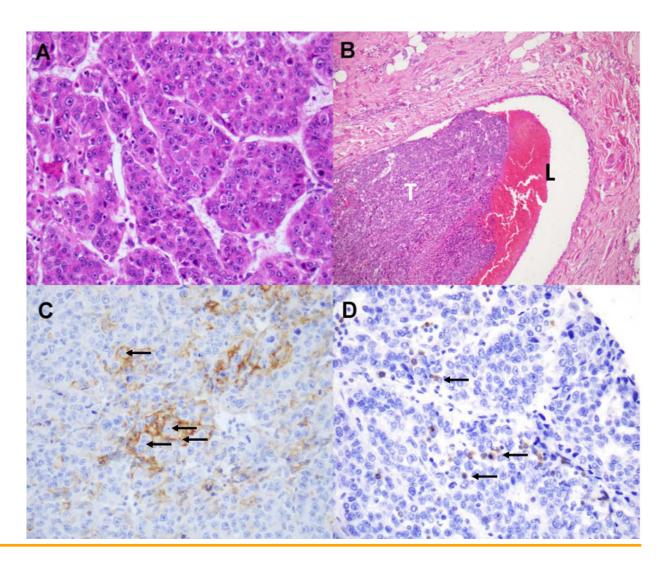
AREAS NEEDING FURTHER RESEARCH WHEN CHOOSING SYSTEMIC THERAPY


- Impact of underlying liver disease on treatment efficacy
 - Viral vs non-viral causes?
- Sequential therapy after immunotherapy nonresponse
- Biomarkers predicting treatment response
 - Ramucirumab and AFP, PD-L1 expression?
- Utility of systemic therapy in Child-Class B cirrhosis

SELECTION BIOMARKERS CONSIDERATIONS IN TREATMENT OF HCC

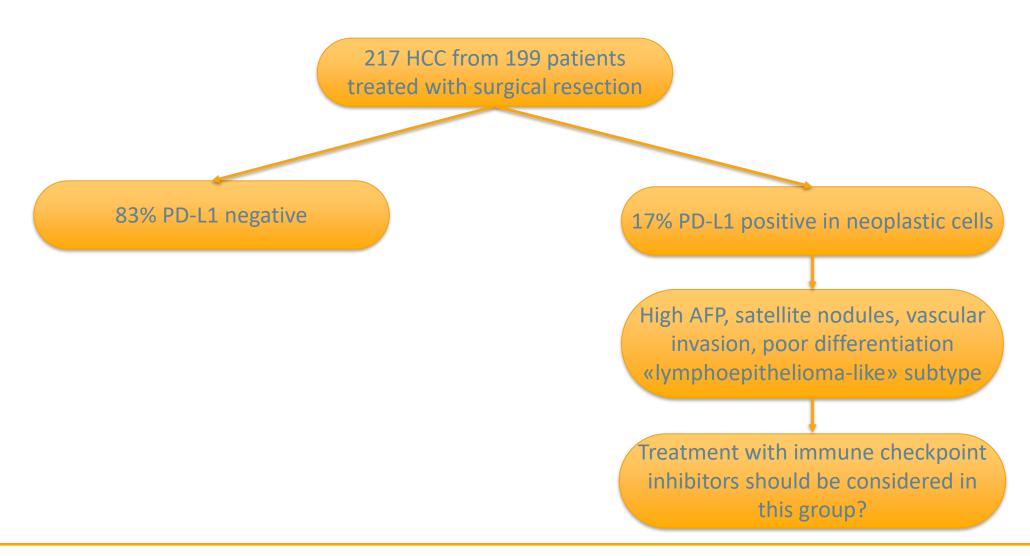
Biomarkers	Clinical Relevance
PD-L1 Expression	 Expression low in HCC (~ 10%) Not found to be robust predictor
Tumor mutational burden (TMB)	Infrequent occurrenceResults inconsistent
Tumor-infiltrating lymphocytes (TIL)	 ~20% HCC tumors well infiltrated Additional studies needed

The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration approvals of immune checkpoint inhibitors



FDA, Food and Drug Administration; GEJ, gastro-esophageal junction; H&N, head and neck; HCC, hepatocellular carcinoma; HL, Hodgkin's Lymphoma; MSI, microsatellite instability; NSCLC, non-small cell lung cancer; PD-L1, programmed cell death ligand 1; PMBCL, primary mediastinal B-cell lymphoma; RCC, renal cell carcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer

PATHOLOGICAL FEATURES OF HCC



- (A) A case of poorly differentiated HCC, with a macrotrabecular architectural pattern and a high degree of nuclear atypia (hematein-eosin-saffron, x 400).
- (B) Massive vascular invasion at the tumor margin, with tumoral thrombi within vessel lumens (hematein-eosin-saffron, x 100).
- (C) Membranous PD-L1 expression by neoplastic cells (arrows, x 400).
- (D) Diffuse tumoral infiltration by PD-1–positive lymphocytes (arrows, x 400).

POSSIBLE THERAPEUTIC STRATIFICATION OF THE PATIENTS BASED ON PD-L1 EXPRESSION IN THE HCC SPECIMENS

CONCLUSIONS

- Treatment of hepatocellular carcinoma (HCC) does not occur in a vacuum
- Coordinated care with gastroenterology/hepatology is essential for preparing and managing patients with cirrhosis in the treatment of HCC

• No currently available predictive biomarkers for re-stratification and for tailoring therapy options

HCC, hepatocellular carcinoma

EXPERTS KNOWLEDGE SHARE

A LOOK TO FUTURE TREATMENTS AND CLOSING REMARKS

Prof. Peter Galle Department of Gastroenterology and Hepatology University Medical Center Mainz, Mainz, Germany

THE CLINICAL BENEFIT OBSERVED WITH ATEZOLIZUMAB + BEVACIZUMAB HAS SPARKED MULTIPLE ONGOING 1L CIT COMBINATION TRIALS

Cancer immunotherapy combinations combinations with anti-VEGF or a TKI

Anti-PDL1

Anti-PD1

Atezolizumab + cabozantinib

(COSMIC-312; phase III) Anti-PD-L1 + TKI

Avelumab + axitinib

(VEGF Liver 100; phase lb) Anti-PD-L1 + TKI

Durvalumab + tivozanib

(DEDUCTIVE; phase lb/II) Anti-PD-L1 + VEGFR TKI

Durvalumab + lenvatinib*

(Dulect2020-1; N/A) Anti-PD-L1 + TKI

Pembrolizumab + lenvatinib

(LEAP-002; phase III) Anti-PD-1 + TKI

Pembrolizumab + regorafenib

(KEYNOTE-743; phase lb) Anti-PD-1 + TKI

Sintilimab + bev-biosimilar*

(ORIENT-32; phase II/III)

Anti-PD-1 + anti-VEGF

(phase II)

Anti-PD-1 + anti-VEGF

Penpulimab + anlotinib*

(phase III) Anti-PD-1 + TKI

Nivolumab + lenvatinib

(Study 117; phase lb)

Anti-PD-1 + TKI

Nivolumab + regorafenib

(RENOBATE; phase II)

Anti-PD-1 + TKI

CS1003 + lenvatinib*

(phase III) Anti-PD-1 + TKI

Toripalimab + lenvatinib*

(phase III)

Anti-PD-1 + TKI

Nivolumab + sorafenib

(phase II) Anti-PD-1 + TKI Camrelizumab + apatinib*

(phase III)

Anti-PD-1 + TKI

HLX10 + bev-biosimilar*

(phase III) Anti-PD-1 + anti-VEGF

Tislelizumab + lenvatinib*

(phase II) Anti-PD-1 + TKI

Phase Ib/II data available

No data available

Ongoing global phase III trials

Nivolumab + lenvatinib (IMMUNIB; phase II) Anti-PD-1 + TKI

SCT-I10A + bev-biosimilar* Toripalimab + bevacizumab*

(phase II/III) Anti-PD-1 + anti-VEGF

Camrelizumab + lenvatinib*

(phase I/II)

Anti-PD-1 + TKI

Toripalimab + sorafenib*

(phase I/II) Anti-PD-1 + TKI Spartalizumab + sorafenib

(phase lb) Anti-PD-1 + TKI

Bispecific antibody combinations

Durvalumab + tremelimumab TSR-042 + TSR-022

Cancer immunotherapy combinations with two CPIs

(HIMALAYA; phase III) Anti-PD-L1 + anti-CTLA-4

(phase II) Anti-PD-1 + anti-TIM3 XmAb22841 ± pembrolizumab

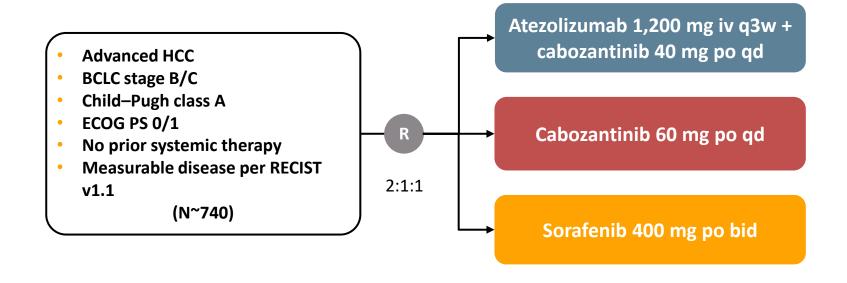
(DUET-4; phase I) Anti-CTLA-4 × anti-LAG3 ± anti-PD-1 AK104 + lenvatinib*

(phase I/II) Anti-PD-1 × anti-CTLA-4 + TKI

Nivolumab + ipilimumab

(CheckMate 9DW; phase III) Anti-PD-1 + anti-CTLA-4

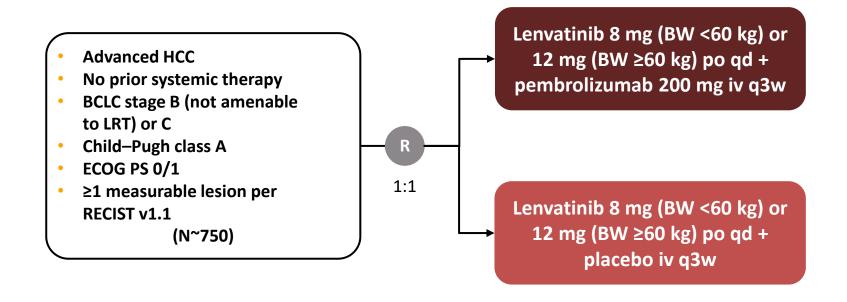
Relatlimab ± nivolumab


(phase I/II) Anti-LAG3 ± anti-PD-1

*China only; †Met primary endpoints (OS and PFS) at interim analysis

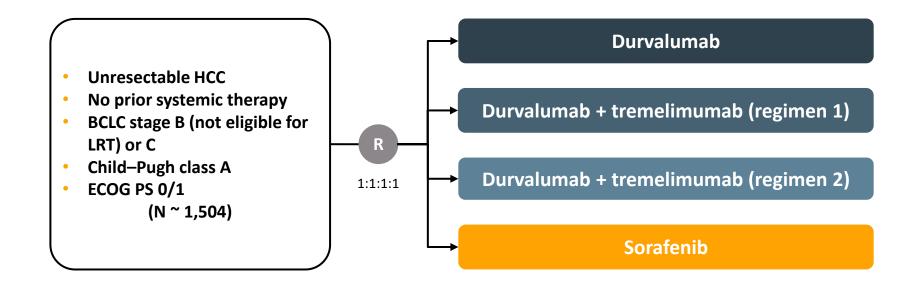
1L, first-line; CIT, cancer immunotherapy; CPI, checkpoint inhibitor; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; LAG3, lymphocyte activation gene-3; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; TIM3, T-cell immunoglobulin and mucin-domain containing gene-3; TKI, tyrosine kinase inhibitor; VEGF(R), vascular endothelial growth factor (receptor)

COSMIC-312 (PHASE III): 1L ATEZOLIZUMAB + CABOZANTINIB IS CURRENTLY BEING INVESTIGATED IN ADVANCED HCC



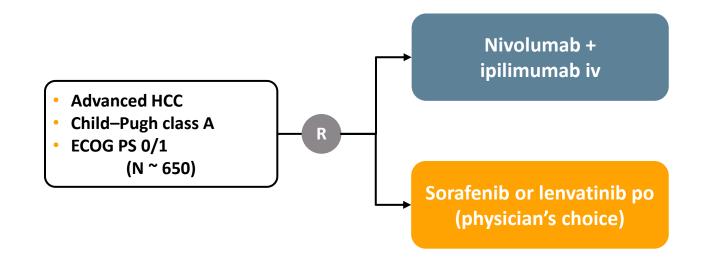
- Co-primary endpoints: PFS by BIRC RECIST v1.1 and OS for atezolizumab + cabozantinib vs sorafenib
- Secondary endpoint: Duration of PFS by BIRC RECIST v1.1 for cabozantinib vs sorafenib

LEAP-002 (PHASE III): ONGOING 1L TRIAL OF LENVATINIB + PEMBROLIZUMAB IN ADVANCED HCC



- Co-primary endpoints: PFS BICR assessed by RECIST v1.1, OS
- Secondary/exploratory endpoints includes: ORR,* DOR,* DCR,* TTP,* PFS,† safety, PK

HIMALAYA (PHASE III): DATA FOR 1L DURVALUMAB ± TREMELIMUMAB IN UNRESECTABLE HCC



- Primary endpoint: OS
- Key secondary endpoints: TTP, PFS, ORR, DCR, DoR, safety and tolerability

CHECKMATE-9DW (PHASE III): 1L TRIAL OF NIVOLUMAB + IPILIMUMAB IN ADVANCED HCC IS CURRENTLY RECRUITING

- Co-primary endpoints: OS
- Secondary endpoints: ORR by RECIST v1.1, DoR, TTSD

REACH HCC CONNECT VIA TWITTER, LINKEDIN, VIMEO & EMAIL OR VISIT THE GROUP'S WEBSITE http://www.hccconnect.info

@hccconnectinfo

Follow the
HCC CONNECT
group on LinkedIn

Watch us on the Vimeo Channel **HCC CONNECT**

Email froukje.sosef@cor2ed.com

HCC CONNECT
Bodenackerstrasse 17
4103 Bottmingen
SWITZERLAND

Dr. Froukje Sosef MD

+31 6 2324 3636

froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

+41 79 529 42 79

antoine.lacombe@cor2ed.com

Connect on LinkedIn @HCC CONNECT

Watch on Vimeo @HCC CONNECT

Visit us at hccconnect.info

Follow us on Twitter @hccconnectinfo

Heading to the heart of Independent Medical Education Since 2012