# COR2ED THE HEART OF MEDICAL EDUCATION

## MOVING FROM PARP INHIBITION TO TARGETING DNA REPAIR AND DNA DAMAGE RESPONSE IN CANCER THERAPY

C. GOURLEY<sup>1</sup>, J. BALMAÑA<sup>2,3</sup>, J.A. LEDERMANN<sup>4</sup>, V. SERRA<sup>3</sup>, R. DENT<sup>5</sup>, S. LOIBL<sup>6</sup>, E. PUJADE-LAURAINE<sup>7</sup>, AND S.J. BOULTON<sup>8,9</sup>

#### SELECTED HIGHLIGHTS

<sup>1</sup>Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Edinburgh, UK <sup>2</sup>Vall d'Hebron University Hospital, Barcelona, Spain <sup>3</sup>Vall d'Hebron Institute of Oncology, Barcelona, Spain <sup>4</sup>UCL Cancer Institute, University College London, London, UK <sup>5</sup>National Cancer Center, Singapore <sup>6</sup>German Breast Group GmbH, Neu-Isenburg, Germany <sup>7</sup>ARCAGY-GINECO, Paris, France <sup>8</sup>The Francis Crick Institute, London <sup>9</sup>Artios Pharma Ltd. Cambridge

Gourley C, et al. J Clin Oncol 2019 May 3: JC01802050 [Epub ahead of print]. https://ascopubs.org/doi/abs/10.1200/JC0.18.02050





# Please note: AstraZeneca has provided a sponsorship grant towards this independent programme

### DNA DAMAGE RESPONSE (DDR) IS OF CRUCIAL IMPORTANCE AS A CANCER TARGET



DDR coordinates the identification, signaling, and repair of DNA damage. PARP is the most well-known therapeutic target and several other targets are being investigated for the treatment of cancer

| DNA damage                  | Signaling pathways<br>자 것 지<br>앉 <sup>X</sup> 엇 | Effectors<br>업국업<br>지즈다 | DNA repair |                                                                                                                                   |  |
|-----------------------------|-------------------------------------------------|-------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Single<br>strand breaks     | PARP1/2                                         | PARG*                   | BER        | Pharmacologically targeted:<br>PARP1/2 Olaparib (AstraZeneca)<br>Rucaparib (Clovis)<br>Niraparib (Tesaro)<br>Talazoparib (Pfizer) |  |
| Double<br>strand breaks     | ATM CDC7*                                       | RAD51*                  | HRR        |                                                                                                                                   |  |
|                             | ATR CHK1/2                                      |                         | NHEJ       | ATR AZD-6738 (AstraZeneca)<br>M-4344 (Merck)                                                                                      |  |
|                             | DNA-PK WEE1                                     | POLQ*                   | MMEJ       | DNA-PKAsi DNA (Onxeo)                                                                                                             |  |
| UV bulky<br>adducts         |                                                 |                         | NER        | CC-125 (Celgene)<br>LY-3023414 (Eli Lilly)<br>M-3814 (Merck)                                                                      |  |
| Single nucleotide mutations | MLH1/2*<br>MSH2/6*                              |                         | MMR        | WEE1 AZD-1775 (AstraZeneca)<br>CHK1/2 CBP-501 (CanBas)<br>Prexasertib (Eli Lilly)<br>GDC-0575 (Genentech)                         |  |
| Excessive DNA damage        |                                                 |                         | Cell death | SRA-737 (Sierra Oncology)<br>ATM AZD-0156 (AstraZeneca)                                                                           |  |
| Low DNA damage              |                                                 |                         | DNA repair |                                                                                                                                   |  |

\*Inhibitors in preclinical development

BER, base excision repair; DDR, DNA damage response; HRR, homologous recombination repair; MMEJ, micro-homology mediated end joining; MMR, mismatch repair; NER, nucleotide excision repair; NHEJ, non-homologous end joining; PARP, poly (ADP-ribose) polymerase

## PARP INHIBITION IN THE TREATMENT OF CANCER



| Ovarian cancer                                      | Breast cancer                       |  |
|-----------------------------------------------------|-------------------------------------|--|
| Maintenance therapy<br>Olaparib Niraparib Rucaparib | Monotherapy<br>Olaparib Talazoparib |  |
| Monotherapy<br>Olaparib Rucaparib                   |                                     |  |

- The therapeutic reach of PARP inhibitors is expanding to other cancer types, many of which are associated with BRCA mutations
  - Trials are ongoing in pancreatic, endometrial, prostate, urothelial, colorectal, glioblastoma, small-cell and non-small-cell lung and gastroesophageal cancers

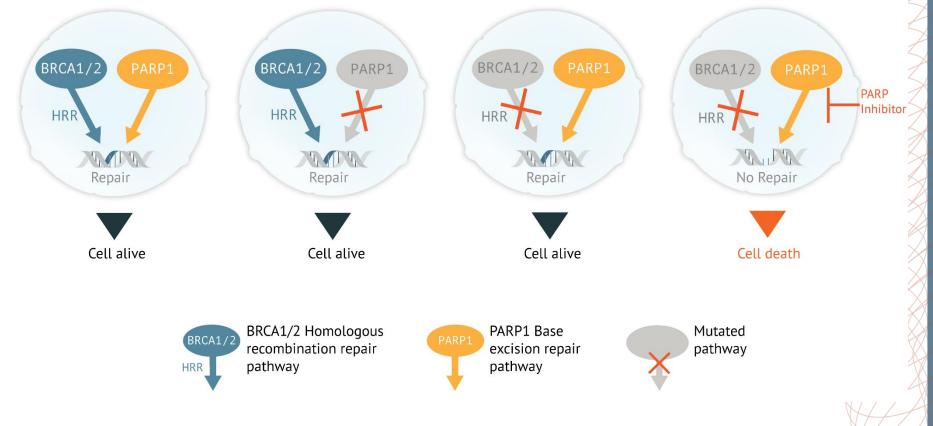
#### THE FUTURE ROLE OF PARP INHIBITION IN CLINICAL PRACTICE



#### Selecting the right patients

- Patients whose tumors harbor BRCA mutations are likely to respond to PARP inhibition, and identifying these patients is now well established in the clinic
  - In ovarian cancer, platinum sensitivity functions as a surrogate marker for HRD
- Genomic scars and mutational signatures associated with an HRD phenotype can define a wider population that may benefit from DDR targeting agents
- Understanding innate tumor genomics prior to treatment and combining this knowledge with information from functional analysis assessing sensitivity to PARP inhibition may be applied to generate patientpersonalized treatment plans

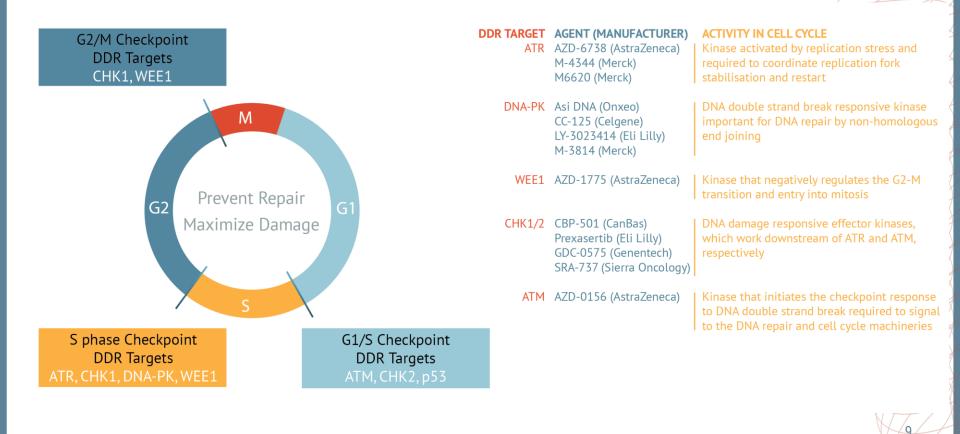
#### THE FUTURE ROLE OF PARP INHIBITION IN CLINICAL PRACTICE




#### **Understanding resistance**

- Several mechanisms of acquired PARP inhibitor resistance have been described in pre-clinical settings
  - To date, only restoration of HRR and expression of hypomorphic forms of BRCA1 have been shown to be clinically relevant
- It is likely that in different cancers, different mechanisms of resistance may emerge, likely depending on the germline or other mutational profile, or other factors such as origin of the disease or prior treatment
  - These mutations may include loss of PARP1 expression, compromised regulation of end-resection via loss of 53BP1, MAD2L2/Rev7 or the Shieldin complex, and activation of trans-lesion DNA synthesis through loss of CHD4, allowing less efficient HRR to proceed

### MOVING FROM PARP TO DDR INHIBITION IN THE CLINIC


Trapping PARP on DNA following its inhibition confers lethality to HRR deficient cells. This concept has been exploited in the clinic and can be applied to other molecules in the DDR pathway.



## **FUTURE DDR TREATMENT STRATEGIES**



The three key cell cycle checkpoints are being targeted by small molecule inhibitors in clinical trials. Cancer cells have increased susceptibility to S-phase-induced DNA damage that in turn may lead to either replication catastrophe or apoptosis (unsustained levels of S-phase DNA damage), or mitotic catastrophe (double strand breaks carried into mitosis).



## **FUTURE DDR TREATMENT STRATEGIES**



#### **Compounds targeting DDR in clinical development (other than PARP1/2 inhibitors)**

| DDR<br>Target | Compound<br>Name | Company Name             | Highest<br>Development Stage | Indication                                                                                                                                                                                                     |
|---------------|------------------|--------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHK1/2        | CBP-501          | CanBas Co Ltd            | Phase II                     | NSCLC                                                                                                                                                                                                          |
| Pre           | Prexasertib      | Eli Lilly and<br>Company | Phase II                     | SCLC, Ovarian Cancer, Triple Negative Breast Cancer,<br>Metastatic Castrate Resistant Prostate Cancer                                                                                                          |
|               | GDC-0575         | Genentech                | Phase I                      | Solid tumors                                                                                                                                                                                                   |
|               | SRA-737          | Sierra Oncology Inc      | Phase I                      | Solid tumors                                                                                                                                                                                                   |
| WEE1          | AZD1775          | AstraZeneca              | Phase II                     | SCLC, Squamous Cell Lung Cancer, Ovarian Cancer, Triple<br>Negative Breast Cancer, Advanced Acute Myeloid<br>Leukaemia or Myelodysplastic Syndrome, Gastric Cancer,<br>Head and Neck Cancer, Pancreatic Cancer |
| ATR           | AZD6738          | AstraZeneca              | Phase I                      | Various solid malignancies                                                                                                                                                                                     |
|               | M-4344           | Merck KGaA               | Phase I                      | Various solid malignancies                                                                                                                                                                                     |
|               | M6620 (VX-970)   | Merck KGaA               | Phase II                     | Various solid malignances                                                                                                                                                                                      |
| DNA-PK        | CC-115           | Celgene Corp             | Phase II                     | Glioblastoma                                                                                                                                                                                                   |
|               | LY-3023414       | Eli Lilly and<br>Company | Phase II                     | SCLC, Endometrial Cancer, Prostate Cancer,<br>Pancreatic Cancer, Lymphoma                                                                                                                                      |
|               | AsiDNA           | Onxeo SA                 | Phase I                      | Various solid malignancies                                                                                                                                                                                     |
|               | M-3814           | Merck KGaA               | Phase I                      | Various solid malignancies                                                                                                                                                                                     |
| ATM           | AZD0156          | AstraZeneca              | Phase I                      | Various solid malignancies                                                                                                                                                                                     |

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer

#### **OPPORTUNITIES FOR COMBINATION THERAPY** WITH DDR-TARGETING COMPOUNDS



# Trials are underway combining compounds targeting DDR, including PARP inhibitors, with:

#### **Other DDR-targeting agents**, including:

- ATR inhibitors
- WEE1 inhibitors

Angiogenesis inhibitors, including:

• VEGF and VEGF-A inhibitors

## **Immunotherapy**, including:

- Anti-PD-1 antibodies
- Anti-PD-L1 antibodies

PD-1, programmed death protein 1; PD-L1, programmed death-ligand 1; VEGF, vascular endothelial growth factor

#### OVERCOMING CHALLENGES IN DDR INHIBITION

- COR2ED THE HEART OF MEDICAL EDUCATION
- The optimal treatment sequence of DDR inhibitors with other agents is still being determined
  - Results from the SOLO 1 trial suggest moving PARP inhibitors/DDR agents earlier in the treatment course may be appropriate for certain patients
- Understanding the differences between the mechanisms of action for different PARP inhibitors and the influence of specific *BRCA* mutations on efficacy will be important to support the future development of DDR inhibitors
- DDR-targeting agents will be tailored for specific patient populations and for specific innate and acquired mechanisms of resistance

#### Key questions for the near future:

Defining the genetic and epigenetic level of HRD

How to incorporate predictive biomarkers of HRD and PARP inhibitor sensitivity into clinically relevant platforms How will the molecular heterogeneity within tumors impact treatment regimens and resistance mechanisms





COR2ED Bodenackerstrasse 17 4103 Bottmingen SWITZERLAND

Dr. Antoine Lacombe Pharm D, MBA Phone: +41 79 529 42 79 <u>antoine.lacombe@cor2ed.com</u>

Dr. Froukje Sosef MD Phone: +31 6 2324 3636 <u>froukje.sosef@cor2ed.com</u>

