

POWERED BY COR2ED

MEETING SUMMARY ENETS 2020 VIRTUAL MEETING

Dr Alia Munir MBBCH MRCP PhD FRCP Consultant Endocrinologist

Sheffield Teaching Hospitals NHS Foundation Trust, UK

March 2020

DISCLAIMER AND DISCLOSURES

NET CONNECT

is supported by an Independent Educational Grant from Ipsen

The views expressed within this presentation are the personal opinion of the author. They do not necessarily represent the views of the author's academic institution or the rest of the NET CONNECT group

DISCLOSURES DR. MUNIR

Speaker fees AAA and Novartis Joint working partnership Novartis Ipsen

PRESIDENTIAL ABSTRACT CLINICAL SCIENCE:

SOMATOSTATIN ANALOGS (SSA) IN PATIENTS WITH SYMPTOMATIC DIFFUSE IDIOPATHIC PULMONARY NEUROENDOCRINE CELL HYPERPLASIA (DIPNECH)

Al-Toubah T, et al. ENETS 2020. Abstract #H01

BACKGROUND

- DIPNECH is a very rare lung disorder considered a precursor of tumourlets and typical/atypical carcinoids¹
- A typical patient is a middle aged non-smoking woman presenting with decades of chronic cough and dyspnoea
- Radiological signs include:
 - Multifocal pulmonary nodules
 - Mosaic attenuation with air trapping
 - Ground glass appearance
 - Endobronchial wall thickening
 - Atelectasis

This multi-institution retrospective chart review on outcomes of SSA treatment in DIPNECH

DIPNECH, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia; SSA, somatostatin analogues

^{1.} Brambilla B, et al. Eur Respir J 2001;18:1059-68; 2. Gorshtein A, et al. Cancer 2012;118:612-9;

^{3.} Chauhan A and Ramirez RA. Lung 2015;193:653-7; 4. Al-Toubah T, et al. ENETS 2020. Abstract #H01 (Oral presentation)

KEY RESULTS

PATIENT CHARACTERISTICS

	N (%)					
Sex						
Female	40 (95.2)					
Male	2 (4.8)					
Age						
<50	4 (9.6)					
50-59	13 (30.9)					
60-69	10 (23.8)					
70+	15 (35.7)					
Ki-67% (on biopsy or surgical specimen)						
Not reported	25 (59.5)					
≤2%	16 (38.1)					
3-20%	1 (2.4)					
Smoking history						
Yes	10 (23.8)					
No	32 (76.2)					
Other therapies for respiratory symptoms						
0	11 (26.2)					
1	9 (21.4)					
2-3	18 (42.9)					
>3	4 (9.5)					
Baseline symptoms						
Cough	34 (80.9)					
Dyspnea	27 (64.2)					
Fatigue	6 (14.3)					
Wheezing	5 (11.9)					
Palpitations	4 (9.5)					
Chest tightness	2 (4.7)					
Hot flashes	1 (2.4)					
Hirsutism	1 (2.4)					
Abdominal pain	1. (2.4)					

SYMPTOM IMPROVEMENT

CHANGE IN FEV1 TEST RESULTS^a

^a15 patients had pre and post treatment FEV1 data

DIPNECH, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia; FEV1, forced expiratory volume in 1 second; SSA, somatostatin analogues. Al-Toubah T, et al. ENETS 2020. Abstract #H01 (Oral presentation)

CONCLUSION

- This was the largest cohort study of SSA therapy for DIPNECH
- SSA therapy was effective at palliating symptoms
 - 76% had a degree of improvement
 - 26% reported significant improvement
- 13 of 15 (87%) showed an improvement in PFTs
- The mechanism of SSA remains uncertain
 - Inhibit PNEC autocrine/paracrine secretion
 - Diminished airway reactivity
- Malignant/metastatic transformation of DIPNECH is rare
- SSA should be considered standard of care in DIPNECH patients
- Further work to investigate aetiology and larger clinical studies are needed

¹⁷⁷Lu-DOTATATE PLUS ¹⁶⁶Ho-**RADIOEMBOLIZATION IN PATIENTS WITH NEUROENDOCRINE TUMOURS; A SINGLE CENTER, PROSPECTIVE, INTERVENTIONAL, NON-COMPARATIVE, OPEN LABEL, PHASE II STUDY (HEPAR PLuS STUDY)**

Braat A, et al. ENETS 2020. Abstract #K04

BACKGROUND

- Liver disease in NENs is a major factor which impacts survival¹
- Treatment options include¹:
 - Surgical resection
 - TAE
 - PRRT
- In general clinical practice PRRT outcomes are good but could be better¹
- HEPAR PLuS is the first prospective single arm phase II trial of combination ¹⁷⁷Lu-DOTATATE PRRT and ¹⁶⁶Ho-radioembolization in NEN

BULKY LIVER METASTASES (>30 mm) DECREASES SURVIVAL²

¹⁶⁶Ho, holmium-166; LAR, long-acting release; ¹⁷⁷Lu, lutenium-177; NEN, neuroendocrine neoplasm; PRRT, peptide receptor radionuclide therapy; TAE, trans-arterial embolisation Braat A, et al. BMC Gastroenterol 2018;18:84; 2. Strosberg J, et al. Annals of Oncology (2018) 29 (suppl_8): viii467-viii478; 3.Strosberg J, et al. EurJ Nucl Med Mol Imaging 2018; 45 (suppl 1): OP-180 Braat A, et al. ENETS 2020. Abstract #K04. Oral Presentation

STUDY ENROLMENT AND KEY DISEASE CHARACTERISTICS

PATIENT DISPOSITION

TUMOUR CHARACTERISTICS

	N (%)				
Primary tumour					
Pancreas	9 (30)				
lleum or jejunum	9 (30)				
Unknown	5 (17)				
Colon, caecum, or rectum	4 (13)				
Bronchus or lung	3 (10)				
Functioning neuroendocrine neoplasms	9 (30)				
Neuroendocrine neoplasm grade					
1	12 (40)				
2	18 (60)				
Fractional liver involvement					
<25%	22 (73)				
25 to 50%	6 (20)				
>50 to 70%	2 (7)				
Extrahepatic disease					
Yes	24 (80)				
No	6 (20)				

CT, computed tomography; ¹⁶⁶Ho, holmium-166; RECIST, response evaluation criteria in solid tumours Braat A, et al. Lancet Oncol 2020; DOI: https://doi.org/10.1016/S1470-2045(20)30027-9 Braat A, et al. ENETS 2020. Abstract #K04, Oral Presentation

PRIMARY EFFICACY ENDPOINT

11

- Efficacy outcomes
 - Additional durable CR/PR after PRRT (mRECIST)
- Clinical toxicity
 - Similar to radioembolisation of other tumour types in salvage setting
- Biochemical toxicity

#K04, Oral Presentation

- Peak in liver enzymes at 3 weeks
- QoL reductions peaked at 3-6 weeks
 - Peak in fatigue at 3 weeks
 - Resolution at 3 months

PRIMARY EFFICACY OUTCOMES

	3 months		6 months		
	Liver-specific response	Patient-based response	Liver-specific response	Patient-based response	
RECIST 1.1 (n=30)					
Complete response	0	0	0	0	
Partial response	13 (43%)	12 (40%)	14 (47%)	10 (33%)	
Stable disease	15 (50%)	14 (47%)	11 (37%)	13 (43%)	
Progressive disease	2 (7%)	4 (13%)	4 (13%)	6 (20%)	
NA	0	0	1 (3%)	1 (3%)	
mRECIST (n=30)					
Complete response	3 (10%)	-	2 (7%)	-	
Partial response	15 (50%)	-	15 (50%)	-	
Progressive disease	0	-	1 (3%)	-	
NA	4 (13%)	-	5 (17%)	-	

PRIMARY SAFETY OUTCOMES

	Grade 1–2	Grade 3	Grade 4	Grade 5		
Related toxicity						
Radioembolisation- induced liver disease	0	0	0	1 (3%)		
Abdominal pain	21 (68%)	3 (10%)	0	0		
Fatigue	18 (58%)	1 (3%)	0	0		
Nausea	19 (61%)	1 (3%)	0	0		
Vomiting	13 (42%)	0	0	0		
Malaise	8 (25%)	0	0	0		
Subfebrile	4 (13%)	0	0	0		
Shivering	3 (10%)	0	0	0		
Oedema	2 (6%)	0	0	0		

CR, complete response; NA, not applicable; PR, partial response; QoL, quality of life; RECIST, response evaluation criteria in solid tumours; mRECIST, modified RECIST Braat A, et al. Lancet Oncol 2020; DOI: https://doi.org/10.1016/S1470-2045(20)30027-9; Braat A, et al. ENETS 2020. Abstract

CONCLUSIONS SO FAR..

• Additional ¹⁶⁶Ho-radioembolization

- Effective in bulky liver disease after PRRT
- Is safe and effective after PRRT1
- Toxicity profile comparable to literature²
- **QoL** was temporarily decreased and fully recovered at **3 months**
- OS and PFS have not been reached, long term follow up is needed
- Dosimetric analysis results are very exciting

¹⁶⁶Ho, holmium-166; OS, overall survival; PFS, progression-free survival; PRRT, peptide receptor radionuclide therapy; QoL, quality of life

^{1.} Braat A, et al. Lancet Oncol 2020; DOI: https://doi.org/10.1016/S1470-2045(20)30027-9; 2. Braat A and Lam M. Cardiovasc Intervent Radiol 2019; 41:200-1; Braat A, et al. ENETS 2020. Abstract #K04, Oral Presentation

ASSESSING RESPONSE TO PRRT

Prasad V, et al. ENETS 2020

RESPONSE ASSESSMENT

- Assesses the efficacy of drugs in clinical trials in order to avoid or reduce
 - Cost of drug development
 - Unnecessary public health risk by early identification of drug failure and reduction of biases and statistical errors
- In NETs, the Gold Standard is pre- and post-therapy tumour tissue sampling
- Response assessment criteria vary by cancer type
- Both clinical endpoints and surrogate biomarkers can be used to assess response
 - Biomarker endpoints
 - Measured objectivelyy
 - Surrogate for clinical endpoints
 - Clinical endpoints
 - Variables of subjects health and well-being
 - Valuable to assess OS and QoL

NET, neuroendocrine tumour; OS, overall survival; QoL, quality of life

1. Faraji F and Gaba RC. Front Oncol 2019;4;9:471; 2. DiMasi JA, et al. J Health Econ 2016;47:20-33; Prasad V. ENETS 2020, Oral Presentation

RESPONSE ASSESSMENT IN NEUROENDOCRINE TUMOURS

REDUCED TUMOUR SIZE AS AN OUTCOME

• Reduction in tumour size can act as an objective response measure¹

KAPLAN-MEIER CURVE OF PFS IN RELATION TO TUMOUR RESPONSE

CgA, chromogranin A; MR; minor response; NET, neuroendocrine tumour; PD, disease progression; PR, partial response; PRRT, peptide receptor radionuclide therapy; SD, stable disease

1. Pavel M, et al. Ann Oncol 2019;30(Supp. 5):v564-73; Prasad V. ENETS 2020, Oral Presentation

RESPONSE ASSESSMENT IN NEUROENDOCRINE TUMOURS

RADIOLOGY AND PSEUDO-PROGRESSION

- Progression markers like CgA may be caused by radiology-induced cell damage²
 - Liver function parameters and CgA should be interpreted with caution
- Transient increase in metastasis size (≥10%) may occur post-PRRT
 - True progression is almost always reflected by new metastases

TRANSIENT INCREASE IN CgA POST-THERAPY

CgA, chromogranin A; MR; minor response; NET, neuroendocrine tumour; PD, disease progression; PR, partial response; PRRT, peptide receptor radionuclide therapy; SD, stable disease Brabander T, et al. Endocr Relat Cancer 2017;24:243-51; Prasad V. ENETS 2020, Oral Presentation

ROAD MAP TO NEW RESPONSE IN PEPTIDE RECEPTOR RADIONUCLIDE THERAPY

MRI, magnetic resonance imaging; PD, disease progression; PET, positron emission tomography; PRRT, peptide receptor radionuclide therapy; QoL, quality of life; RECIST, Response evaluation criteria in solid tumours

CONCLUSION

- Optimal criteria for the response of PRRT is a challenge
- Process requires a collective effort collect to prospectively study and real world data to find the best response criteria for PRRT
- PET must be included in the response assessment of PRRT

REACH NET CONNECT VIA TWITTER, LINKEDIN, VIMEO & EMAIL OR VISIT THE GROUP'S WEBSITE http://www.net-connect.info

in 1

Follow us on Twitter @net-connectinfo Follow the <u>NET CONNECT</u> group on LinkedIn Watch us on the Vimeo Channel NET CONNECT Email antoine.lacombe @cor2ed.com

NET CONNECT Bodenackerstrasse 17 4103 Bottmingen **SWITZERLAND**

Dr. Antoine Lacombe Pharm D, MBA Phone: +41 79 529 42 79 antoine.lacombe@cor2ed.com

Dr. Froukje Sosef MD Phone: +31 6 2324 3636 froukje.sosef@cor2ed.com

