

POWERED BY COR2ED

ADVANCED PET IMAGING IN PROSTATE CANCER

Phillip J. Koo, MD

Division Chief of Diagnostic Imaging Banner MD Anderson Cancer Center, USA

PET, positron-emission tomography

Please note: The views expressed within this presentation are the personal opinions of the author. They do not necessarily represent the views of the author's academic institution or the rest of the GU CONNECT group

RADAR I RECOMMENDATIONS: CONVENTIONAL IMAGING FOR DETECTION OF METASTATIC DISEASE IN PROSTATE CANCER

Authors:

F. David Crawford Nelson N. Stone **Evan Y. Yu** Phillip J. Koo Stephen J. Freedland Susan F. Slovin Leonard G. Gomella E. Roy Berger Thomas F. Keane Paul Sieber Neal D. Shore Daniel P. Petrylak

RADAR III RECOMMENDATIONS: ADVANCED PET IMAGING FOR DETECTION OF METASTATIC DISEASE IN PROSTATE CANCER

	Newly Diagnosed Patients	Biochemical Recurrent Patients	M0 Castrate-Resistant Patients	M1 Castrate-Resistant Patients*	
KAUAR I Conventional Scan Recommendations	Conventional scan high- and intermediate-risk patient with at least 2 of the following criteria positive: • PSA level >10 ng/ml • Gleason score ≥7 • Palpable disease (≥T2b)	1st conventional scan when PSA level between 5 and 10 ng/ml Imaging frequency if negative for previous conventional scan: 2nd scanning when PSA=20 ng/ml and every doubling of PSA level thereafter (based on PSA testing every 3 months)	1st conventional scan when PSA level ≥2 ng/ml Imaging frequency if negative for previous conventional scan: 2nd conventional scan when PSA=5 ng/ml and every doubling of PSA level thereafter (based on PSA testing every 3 months)	Utilize conventional scans, and consider NGI only if conventional scans are negative and the clinician still suspects disease progression NGI based on at least one of the	
KADAN III IGI Recommendations	If conventional imaging is equivocal or negative with continued high suspicion for metastatic disease, consider NGI	Consider NGI for PSA ≥0.5 PSA <0.5 can be considered based on specific performance of various NGI techniques	Only consider NGI in the setting of PSADT <6 months, when M1 therapies would be appropriate	 following: With every doubling of PSA since the previous image Every 6–9 months in the absence of PSA rise Change in symptomatology Change in performance status 	

*Limitations include lack of data and difficulty making comparisons to non-NGI techniques.

NGI, next generation imaging; M, metastasis; PET, positron-emission tomography; PSA, prostate-specific antigen; PSADT, PSA doubling time; RADAR, Radiographic Assessments for Detection of Advanced Recurrence; T, tumour

Crawford ED, et al. [published online ahead of print Aug 2, 2018]. J Urol. doi: 10.1016/j.juro.2018.05.164

PROSTATE CANCER PET DETECTION RATES AS A FUNCTION OF PSA IN PATIENTS WITH BIOCHEMICAL RECURRENCE

Study	PET Radiotracer	% of Patients with BCR	% of Patients with Positive PET/CT		
			PSA <1.0	PSA 1.0-2.0	PSA >2.0
Choline					
Mitchell Giovacchini Richter Krause Castellucci Nanni Schwenck Cimitan Schillaci Morigi	¹¹ C-choline ¹¹ C-choline ¹¹ C-choline ¹¹ C-choline ¹¹ C-choline ¹¹ C-choline ¹¹ C-choline ¹⁸ F-choline ¹⁸ F-choline ¹⁸ F-methchol	100% (176/176) 100% (358/358) 100% (73/73) 100% (63/63) 100% (190/190) 100% (89/89) 100% (101/101) 100% (100/1000) 100% (49/49) 100% (38/38)	44% (15/34) 19% (27/141) 7% (1/5) 36% (8/22) 19% (10/51) 14% (4/28) 44% (8/18) 31% (66/211) 20% (2/10) 13% (2/16)	67% (21/31) 46% (39/85) 46% (6/13) 43% (3/7) 25% (10/39) 29% (8/28) 81% (21/26) 43% (66/153) 56% (5/9) 36% (5/14)	86% (96/111) 72% (95/132) 80% (36/45) 71% (24/34) 54% (54/100) 55% (18/33) 89% (51/57) 81% (513/636) 83% (25/30) 63% (5/8)
PSMA					
Schwenck Morigi Afshar-Oromieh Eber Bluemel Verburg	⁶⁸ Ga-PSMA ⁶⁸ Ga-PSMA ⁶⁸ Ga-PSMA ⁶⁸ Ga-PSMA ⁶⁸ Ga-PSMA ⁶⁸ Ga-PSMA	100% (101/101) 100% (38/38) 100% (319/319) 100% (248/248) 100% (32/32) 100% (155/155)	61% (11/18) 50% (8/16) 53% (27/51) 67% (35/52) 29% (4/14) 44% (12/27)	76% (20/26) 71% (10/14) 72% (28/39) 93% (67/72) 46% (5/11) 79% (15/19)	93% (53/57) 88% (7/8) 92% (204/221) 97% (120/124) 71% (5/7) 89% (97/109)
Fluciclovine					
Nanni Odewole Bach-Gansmo Schuster	¹⁸ F-FACBC ¹⁸ F-FACBC ¹⁸ F-FACBC ¹⁸ F-FACBC	100% (89/89) 100% (53/53) 100% (596/596) 100% (93/93)	21% (6/28) 38% (3/8) 41% (53/128)	46% (13/28) 78% (7/9) 58% (N?) 72% (N?)	55% (18/33) 86% (31/36) 75%-85% (N?)

¹¹C, carbon-11; ¹⁸F, fluorine-18; ⁶⁸Ga, gallium-68; BCR, biochemical recurrence; CT, computed tomography; FACBC, fluciclovine; PET, positron-emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen

RADIOTRACERS FOR NGI IMAGING OF PROSTATE CANCER

Radiotracer	Sensitivity (%)	Specificity (%)	Action/Target	Pros	Cons	Indications
¹⁸ F-FACBC (fluciclovine)	89-100	67-70	Amino acid transport	Slow urinary excretion improving signal; more sensitive at lower PSA levels than acetate and choline	Moderate specificity and moderate performance at low PSA cut-offs; needs validation in larger studies	Detection of local and distant recurrence
¹¹ C-choline	38-98	50-100	Cell membrane synthesis	Minimal bladder excretion	Short half-life; variable sensitivity and specificity for BCR particularly at low PSA cut-offs; only a few centers have cyclotron on-site	Detection of recurrent disease in lymph node and soft tissues
⁶⁸ Ga-PSMA	63-86	95-100	Targets PSMA	High detection rates even at low PSA levels	Requirement of a ⁶⁸ Ga generator, need more validation	High detection rate of local and distant sites of recurrence, also of metastatic disease in high-risk patients undergoing primary definitive therapy
¹⁸ F-DCFBC	92	88	Targets PSMA	Slightly longer half-life than ⁶⁸ Ga	First generation of 18F-labeled urea; considerable blood pool activity, being investigated in clinical trials, need more validation	For better slection of primary definitive therapy, both hormone-sensitive and CRPC
¹⁸ F-DCFPyL	71	89	Binds PSMA	More sensitive to detect occult lymph nodes before primary definition therapy; higher tumor to background ratios due to high affinity	Still being investigated in phase 3 clinical study	Detection of occult lymph nodes before primary definitive treatment, early local and distant recurrence
¹¹ C-acetate	42-90	64-96	Lipid Synthesis	Ability to image both soft tissue and skeletal mets; minimal bladder excretion	Short half-life few centers have a cyclotron on-site	Identification of metastatic disease

¹¹C, carbon-11; ¹⁸F, fluorine-18; ¹⁸F-DCFBC, N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-¹⁸F-fluorobenzyl-L-cysteine; ¹⁸F-DCFPyL, 2-(3-[1-carboxy-5-[(6-[¹⁸F]fluoropyridine-3-carbonyl)amino]pentyl]-ureido)pentanedioic acid; ⁶⁸Ga, gallium-68; BCR, biochemical recurrence; CRPC, castration-resistant prostate cancer; FACBC, fluciclovine; NGI, next generation imaging; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen

MEDICARE COVERAGE FOR SEVERAL NGI TECHNIQUES

Scan Type	Medicare Coverage
¹⁸ F-fluciclovine PET/CT	Yes
¹¹ C-choline PET/CT	Yes (Limited ^a)
¹⁸ F-NaF PET/CT	No
¹⁸ F-FDG PET/CT	Yes (STS)
⁶⁸ Ga-PSMA PET/CT	No

^aOn-site cyclotron with site specific/ANDA

¹¹C, carbon-11; ¹⁸F, fluorine-18; ⁶⁸Ga, gallium-68; ANDA, abbreviated new drug application; CT, computed tomography; FDG, fluorodeoxyglucose; NaF, sodium fluoride; NGI, next generation imaging; PET, positron-emission tomography; PSMA, prostate-specific membrane antigen; STS, subsequent treatment strategy

- Novel NGI techniques provide the ability to identify metastatic prostate cancer at an earlier stage in the disease course
- Advanced PET imaging is more accurate and detects disease at lower PSA levels than conventional imaging
- Current data regarding the use of advanced PET is most mature in patients with biochemically recurrent prostate cancer
- Access to and reimbursement for the various PET radiopharmaceuticals varies by region/country

GU CONNECT Bodenackerstrasse 17 4103 Bottmingen SWITZERLAND

Dr. Antoine Lacombe Pharm D, MBA Phone: +41 79 529 42 79 antoine.lacombe@cor2ed.com

Dr. Froukje Sosef MD Phone: +31 6 2324 3636 <u>froukje.sosef@cor2ed.com</u>

