

**PCSK9i BluePrint** 



THIS BLUEPRINT HAS BEEN DEVELOPED UNDER THE GUIDANCE OF A STEERING COMMITTEE WHICH INCLUDED THE FOLLOWING MEMBERS:

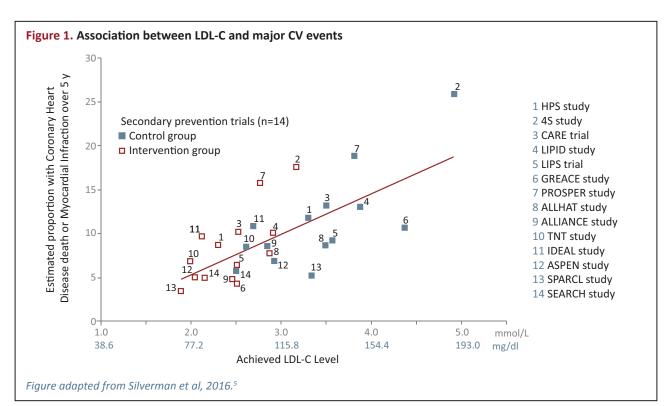
- Prof. Uwe Zeymer Heart Center Ludwigshafen, Department of Cardiology, Germany
- Prof. Zuzana Motovska Charles University, University Hospital Kralovské Vinohrady, Prague, Czech Republic
- Prof. Anna Franzone Federico II University of Naples, Italy
- Prof. Jeanine Roeters van Lennep Erasmus Medical Center, Rotterdam, The Netherlands
- Dr. Flavien Vincent Centre Hospitalier Régional Universitaire de Lille, Lille, France

The development of this BluePrint was supported by an Independent Educational Grant from Amgen.

# PCSK9 INHIBITION EARLY AFTER AN ACUTE CORONARY SYNDROME: RATIONALE AND CLINICAL EVIDENCE

# **Clinical Question**

Early (in-hospital) initiation of PCSK9 inhibitor therapy in patients with acute coronary syndrome may provide additional clinical benefit when used on top of statin treatment.


# **DOCUMENT PURPOSE**

To outline the current guideline recommendations regarding low-density lipoprotein cholesterol (LDL-C) targets in patients with acute coronary syndrome (ACS); the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the rationale for its inhibition in ACS; and the expected clinical impact of PCSK9 inhibitors in the acute phase of ACS.

#### 1.0 Introduction

ACS represents a group of **potentially life-threatening conditions that are associated with high morbidity and mortality** despite recent advances in treatment. ACS is classified into the following categories: **ST-elevation myocardial infarction** (STEMI) and **non-ST-elevation ACS** which can be further subdivided into unstable angina and non-ST segment elevation myocardial infarction (NSTEMI). The related healthcare costs are substantial because re-hospitalisations for repeated cardiac events are common.<sup>1-3</sup> LDL-C is well established as a major cardiovascular (CV) risk factor. Accumulating evidence supports a **linear association between reductions in LDL-C levels and CV risk** in patients with atherosclerotic CV disease (**Figure 1**).<sup>4-6</sup> Therefore LDL-C reduction is an important treatment target in all relevant CV risk management guidelines.

PCSK9 inhibitors are a recently introduced, highly effective LDL-C lowering treatment which when used in addition to statin and/or ezetimibe treatment early after ACS, may achieve very low levels of LDL-C and further improve clinical outcomes.







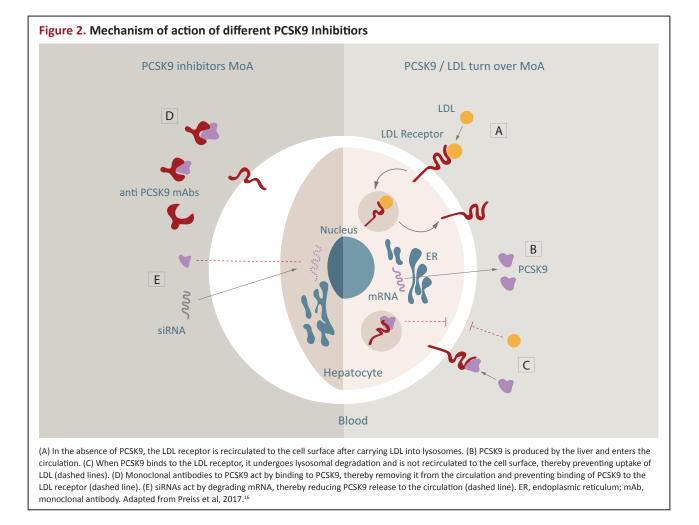
# 2.0 Current approaches to the management of LDL-C in ACS Patients

The acute management of ACS recommended by current European (European Society of Cardiology [ESC]) and US American College of Cardiology/American Heart Association [ACC/AHA]) guidelines<sup>7-9</sup> comprises revascularisation procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) as well as antithrombotic medication and lipid-lowering therapies. After hospital discharge, lifestyle interventions (e.g. smoking cessation, exercise, healthy diet) are combined with **managing risk factors such as hypertension, diabetes and dyslipidaemia.**<sup>7,8,10</sup>

ACC/AHA guidelines<sup>9</sup> recommend high-intensity statin therapy in patients with clinical atherosclerotic CV disease (ASCVD) to **reduce LDL-C levels by ≥50%**, and in combination with ezetimibe, if necessary, to achieve a target LDL-C level <70 mg/dL (<1.8 mmol/L) for very-high-risk ASCVD patients. The 2017 ESC STEMI guidelines<sup>7</sup> recommend the same targets.

Target LDL-C levels are even lower in the 2020 ESC guidelines for the management of ACS in patients presenting without persistent ST-segment elevation:<sup>8</sup> it is recommended to reduce LDL-C levels by ≥50%, with a **target level** <**55 mg/dL (<1.4 mmol/L)** using high intensity statin therapy, in combination with ezetimibe, if necessary. In patients who have experienced several ischaemic events, the target is <40 mg/dL (<1.0 mmol/L). In patients who do not reach these LDL-C targets despite maximal tolerated statin and ezetimibe therapy within 4-6 weeks after discharge, addition of a PCSK9 inhibitor is recommended.

However, in clinical practice only a minority of patients at high or very high-risk of CV events<sup>11</sup> achieve recommended LDL-C target levels (22-45% in a recent EU-wide cross-sectional observational study).<sup>11-13</sup>


# 3.0 The Role of PCSK9 inhibition in LDL-C reduction

PCSK9 inhibition is a relatively new approach to reducing LDL-C levels. Whereas statins inhibit cholesterol synthesis in the liver and ezetimibe reduces LDL-C absorption from the small intestine, **PCSK9 inhibitors increase LDL-C uptake by the liver**, reducing LDL-C concentrations in the blood.

PCSK9 is a proprotein convertase enzyme involved in the degradation of LDL receptors on the surface of hepatic cells. Blocking PCSK9 increases the number of receptors allowing more LDL-C to be absorbed by the liver.

There are currently two strategies to inhibit PCSK9 activity (Figure 2) with differing mechanisms of action:

- Monoclonal antibodies (mAb's) which bind to and inactivate PCSK9 in the blood<sup>14</sup>
- Small interfering RNA (siRNA) molecules that suppress the synthesis of PCSK9 by binding to the messenger RNA, which is then degraded in the hepatic cell<sup>15</sup>







In early 2015, the monoclonal antibodies evolocumab and alirocumab were approved in the EU, the US, China, and Japan. The siRNA molecule inclisiran was approved in the EU in December 2020 and is currently awaiting approval in the US.

PCSK9 inhibitors are administered by subcutaneous injection; the mAb's, alirocumab and evolocumab, every 2-4 weeks, and the siRNA, inclisiran, at six-monthly intervals.

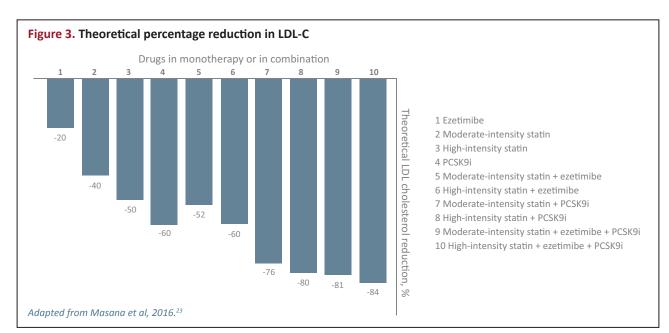
All currently available PCSK9 inhibitors achieve strong reductions in LDL-C levels beyond those achievable with conventional lipid-lowering therapies. However, to date only the mAb's alirocumab and evolocumab have also demonstrated CV risk reduction (Section 4.0).

Alirocumab has been shown to reduce LDL-C levels by 45-62%, and evolocumab has been shown to lower LDL-C levels by 55-75% when added to background statin treatment (**Table 1**).<sup>17-20</sup> For inclisiran, a meta-analysis indicates a 51% reduction in LDL-C levels in patients who do not reach treatment targets with maximum tolerated statin therapy.<sup>21</sup> These numbers compare favourably with the 10-20% additional reductions from ezetimibe when combined with statins (**Figure 3**).<sup>22,23</sup> PCSK9 inhibition has also been shown to be effective in patients with statin intolerance.<sup>25-27</sup> A systematic review has estimated that, with the addition of PCSK9 inhibitors to conventional therapy, it is possible to achieve recommended LDL-C targets in about 90% of patients with hypercholesterolaemia.<sup>23</sup>

# 4.0 PCSK9 Inhibition and CV Risk Reduction

Randomised controlled double-blind trials have demonstrated **a reduction in CV endpoints** with alirocumab and evolocumab (**Table 2**).<sup>17-20</sup> Inclisiran has not yet reported a reduction in CV endpoints but this is currently under evaluation in the ORION-4 trial (NCT03705234) which is estimated to report at the end of 2024.

Specifically, in patients with a history of ACS, there is evidence of an additional reduction in CV risk when PCSK9 inhibitors are administered on top of statin therapy (Table 2):


 In the FOURIER trial<sup>19</sup> 80.9% of patients had a history of myocardial infarction (MI). The median duration of followup was 2.2 years. With evolocumab there was a 15% reduction in the risk of CV death, MI, stroke, hospitalisation for unstable angina, or coronary revascularisation. The secondary endpoint of CV death, MI, and stroke was reduced by 20%

| Table 1. | Percentage | reduction in | nlasma  | IDI-C with | different | PCSK9 inhibitors |
|----------|------------|--------------|---------|------------|-----------|------------------|
| Table 1. | rereentage | reduction m  | piasina | EDE-C WITH | uniciciii |                  |

|                                                   | Per cent reduction in plasma LDL-C (%) <sup>a</sup> |                         |                            |  |
|---------------------------------------------------|-----------------------------------------------------|-------------------------|----------------------------|--|
|                                                   | Monotherapy                                         | Added to statin therapy | Statin-intolerant patients |  |
| High-intensity statin                             | 50-60                                               | ND                      | ND                         |  |
| Ezetimibe                                         | 20-25                                               | 20-2522                 | 15 <sup>24</sup>           |  |
| PCSK9 inhibitor                                   |                                                     | `<br>                   |                            |  |
| Evolocumab 140 mg every 2 weeks or 420 mg monthly | 55-57                                               | 63-75                   | 55-56                      |  |
| Alirocumab 150 mg every 2 weeks                   | ND                                                  | 62                      | 45 <sup>b</sup>            |  |
| Alirocumab 300 mg every 4 weeks                   | 59                                                  | 56                      | ND                         |  |
| Inclisiran                                        | 50                                                  | 52 <sup>21</sup>        | ND                         |  |

Adapted from Sabatine, 2019.14

<sup>a</sup> Not based on head-to-head studies; <sup>b</sup> 75 mg every 2 weeks, increased to 150 if LDL-C levels ≥70 mg/dL (≥1.8 mmol/L); ND, no data







| Trial<br>name and<br>reference     | PCSK9<br>inhibitors | Number<br>of<br>patients | Patient profile                                                                                 | Baseline<br>LDL- C<br>level<br>mg/dL<br>(mmol/L) | Mean<br>absolute<br>reduction in<br>plasma LDL-C<br>level mg/dL<br>(mmol/L) | Mean<br>percent<br>reduction<br>in plasma<br>LDL-C level<br>(%) | Median<br>follow-up    | Key results                                                                                                                                                                                  |
|------------------------------------|---------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOURIER <sup>19</sup>              | Evolocumab          | 27,564                   | Patients with MI, stroke<br>or peripheral artery<br>disease                                     | 92 (2.38)                                        | 56 (1.44) at<br>48 weeks                                                    | 59                                                              | 2.2 years              | 15% reduction in CV<br>death, MI, stroke,<br>hospitalisation for<br>unstable angina<br>or coronary<br>revascularisation<br>20% reduction in the<br>secondary endpoint<br>of CV death, MI and |
| ODYSSEY<br>Outcomes <sup>20</sup>  | Alirocumab          | 18,924                   | Patients with history<br>of ACS                                                                 | 92 (2.38)                                        | 53 (1.37) at<br>48 weeks                                                    | 54.7                                                            | 2.8 years              | stroke.<br>15% reduction in<br>CHD death, MI,<br>ischaemic stroke or<br>hospitalisation for<br>unstable angina<br>14% reduction in CV<br>death, MI or stroke                                 |
| ODYSSEY<br>Long-term <sup>18</sup> | Alirocumab          | 2,341                    | Patients with familial<br>hypercholesterolaemia<br>or with established<br>CHD or CHD equivalent | 122 (3.15)                                       | 74 (1.91) at<br>24 weeks                                                    | 61.9                                                            | 1.5 years <sup>a</sup> | 48% reduction in<br>death from CHD,<br>nonfatal MI, fatal or<br>nonfatal ischaemic<br>stroke, or unstable<br>angina requiring<br>hospitalisation <sup>b</sup>                                |
| OSLER-<br>extension <sup>17</sup>  | Evolocumab          | 4,465                    | Varying characteristics <sup>c</sup>                                                            | 120 (3.10)                                       | 70.5 (1.82) at<br>48 weeks                                                  | 58.4                                                            | 0.93 years             | 53% reduction<br>in major adverse<br>CV events (death,<br>coronary events,<br>cerebrovascular<br>events or heart<br>failure requiring<br>hospitalisation)                                    |

## Table 2. CV outcomes trials with PCSK9 inhibitors

<sup>a</sup> Mean; <sup>b</sup> Post-hoc analysis; <sup>c</sup>The trials included patients with familial hypercholesterolaemia; patients with elevated LDL-C while on statin or with LDL-C  $\geq$ 100 mg/dL ( $\geq$ 2.6 mmol/L) not on statins, and statin-intolerant patients

 In the ODYSSEY-OUTCOMES trial<sup>20</sup> the median duration of follow-up was 2.8 years. Alirocumab administered between 1 to 12 months after index ACS reduced the risk of death from coronary heart disease, nonfatal MI, fatal or nonfatal ischaemic stroke, or unstable angina requiring hospitalisation by 15%. The endpoint of CV death, MI and stroke was reduced by 14%

The cost-effectiveness of reducing CV risk in ACS patients with PCSK9 inhibition is a consideration in clinical practice. A number of analyses have addressed the issue for different patient and reimbursement conditions, with the greatest cost-effectiveness typically found among patients with the highest LDL-C levels at baseline.<sup>28-34</sup>

### 5.0 Early Reduction of LDL-C with PCSK9 inhibition post-ACS

ACS patients are at increased risk of recurrent ischemic events, particularly during the early period following the index event<sup>35</sup> but many of them do not reach recommended LDL-C treatment targets.<sup>36</sup>

Several meta analyses<sup>37-39</sup> and a recent randomised trial<sup>38</sup> have shown that high-dose statin treatment before PCI in patients with STEMI, NSTE-ACS or stable angina can reduce the risk of

periprocedural MI within 30 days. However, more studies are needed to confirm the benefits as not all available studies agree on this outcome,<sup>41</sup> and long-term data are lacking.

Although data are still relatively limited, several studies have shown very early reduction of LDL-C levels with evolocumab in the acute phase of ACS:

- In the EVACS trial, NSTE-ACS patients received evolocumab on top of high-intensity statin therapy within 24 hours of presentation. LDL-C levels started to decrease within 24 hours and were lower than with placebo after three days (46% reduction with evolocumab vs 12% reduction with placebo).<sup>42</sup>
- In the EVOPACS trial, patients with NSTE-ACS or STEMI received evolocumab in-hospital (within 72 hours of symptom onset) and after 4 weeks, on top of statin therapy. This experimental strategy reduced LDL-C levels by 77% as early as within 4 weeks and brought >95 % of patients to target levels within 8 weeks.<sup>35</sup>

A number of ongoing trials will provide further evidence (**Table 3**) to support the early reduction of LDL-C with evolocumab and potentially alirocumab. Presently, there are no ongoing trials exploring inclisiran in the acute phase of ACS.





#### Table 3. Ongoing and planned trials of PCSK9 inhibitors in the acute ACS setting

| Study name (NTC number)                                                                                                                                                                                                                                  | Description                                                                                 | Number of<br>patients | Estimated<br>completion date |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|------------------------------|
| EVACS II (NCT04082442)                                                                                                                                                                                                                                   | Evolocumab administered during early<br>hospitalisation in STEMI patients                   | 100                   | Late 2021                    |
| EPIC STEMI (NCT03718286)                                                                                                                                                                                                                                 | Alirocumab administered to STEMI patients before they undergo a revascularisation procedure | 100                   | Mid-2021                     |
| PACMAN-AMI<br>(NCT03067844)                                                                                                                                                                                                                              | Effects of alirocumab in patients with NSTE-ACS or STEMI undergoing PCI                     | 294                   | Late 2021                    |
| EMSIACS (NCT04100434)                                                                                                                                                                                                                                    | Effects of evolocumab in ACS patients                                                       | 500                   | Mid-2023                     |
| AMUNDSEN REAL Planned randomised real-world study in NSTE-A<br>(https://www.action-<br>groupe.org/en/etude/<br>amundsen-action) Planned randomised real-world study in NSTE-A<br>and STEMI patients who will receive evolocumal<br>before undergoing PCI |                                                                                             | 1,660                 | Late 2023                    |

#### 6.0 Safety of PCSK9 inhibition

Current evidence has not supported earlier safety concerns around achieving very low LDL-C levels (<30 mg/dL; the median in the FOURIER trial).<sup>43-45</sup> Large scale trials also support the **good safety profile** of PCSK9 inhibition.

- In the FOURIER and ODYSSEY OUTCOMES trials, which together included >45,000 patients, evolocumab and alirocumab demonstrated very favourable safety profiles (Table 4). PCSK9 inhibition showed similar rates to placebo for relevant side effects such as muscle-related events, incidence of cataract, neurocognitive adverse events, or haemorrhagic stroke<sup>19,20</sup>
- For all PCSK9 inhibitors, there seems to be slightly more injection-site reactions than with placebo, but most of these are mild<sup>46</sup>

The findings are supported by specific analyses  $^{\rm 47}$  and real-world evidence.  $^{\rm 48,49}$ 

The long term safety of evolocumab is being evaluated in the FOURIER open label extension trial (NCT03080935) which is due to complete late 2021.

## 7.0 Additional benefits of PCSK9 inhibition

There are data supporting the benefits of PCSK9 inhibition on **slowing the progression of coronary atherosclerosis;** these benefits are related to the additional effect on LDL-C levels on top of statins.

The GLAGOV trial reported a significant reduction in percent atheroma volume (indicating atherosclerosis regression) when evolocumab was added to statin therapy over 18 months in subjects with coronary disease.<sup>50</sup>

The ODYSSEY J-IVUS study found that alirocumab (nonsignificantly) reduced atheroma volume in patients hospitalised for ACS and inadequately controlled with statin therapy.<sup>51</sup>

# 8.0 Summary

PCSK9 inhibition can powerfully and rapidly reduce LDL-C levels, and therefore there may be a case for initiation of PCSK9 inhibition therapy during the acute in-hospital phase of ACS. Whether intensive LDL-C reduction with PCSK9 inhibitors early after ACS will translate into better clinical outcomes requires further studies.

#### Table 4. Rates of adverse events in the outcomes trials with PCSK9 inhibitors in ACS patients

|                                                                                      | Adverse event rate (%) |                    |                                |         |  |
|--------------------------------------------------------------------------------------|------------------------|--------------------|--------------------------------|---------|--|
|                                                                                      | FOUF                   | RIER <sup>19</sup> | ODYSSEY Outcomes <sup>20</sup> |         |  |
|                                                                                      | Evolocumab             | Placebo            | Alirocumab                     | Placebo |  |
| AEs thought to be related to the study agent and leading to discontinuation          | 1.6                    | 1.5                | N/A                            | N/A     |  |
| AEs leading to discontinuation                                                       | N/A                    | N/A                | 3.6                            | 3.4     |  |
| Injection-site reaction                                                              | 2.1                    | 1.6                | 3.8                            | 2.1     |  |
| Allergic reaction                                                                    | 3.1                    | 2.9                | 7.9                            | 7.8     |  |
| Muscle-related event                                                                 | 5.0                    | 4.8                | N/A                            | N/A     |  |
| Rhabdomyolysis                                                                       | 0.1                    | 0.1                | N/A                            | N/A     |  |
| Cataract                                                                             | 1.7                    | 1.8                | 1.3                            | 1.4     |  |
| Adjudicated new-onset diabetes                                                       | 8.1                    | 7.7                | 9.6                            | 10.1    |  |
| Diabetes worsening or diabetic complication among patients with diabetes at baseline | N/A                    | N/A                | 18.8                           | 21.2    |  |
| Hepatic disorder                                                                     | N/A                    | N/A                | 5.3                            | 5.7     |  |
| Neurocognitive event                                                                 | 1.6                    | 1.5                | 1.5                            | 1.8     |  |
| Adjudicated haemorrhagic stroke                                                      | N/A                    | N/A                | <0.1                           | 0.2     |  |

N/A, not available





# Glossary

Acute coronary syndrome(s) (ACS), broadly defined class of acute conditions ranging from cardiac arrest, or electrical or haemodynamic instability with cardiogenic shock to patients who are already pain-free again at the time of presentation. Important ACS events include NSTE-ACS and STEMI.

**Coronary artery bypass grafting (CABG),** procedure to bypass native coronary arteries that have high-grade stenosis or occlusion by grafting the left internal mammary artery or segments of saphenous vein to the coronary artery.

**Low-density lipoprotein cholesterol (LDL-C),** cholesterol transported in the circulation by low-density lipoprotein, the elevation of which is directly related to the risk of coronary artery disease and cholesterol-related morbidity

Non-ST-segment elevation ACS (NSTE-ACS), term comprising non-ST-segment elevation myocardial infarction (NSTEMI) and unstable angina

**Percutaneous coronary intervention (PCI),** the opening of narrowed or blocked coronary arteries by means of balloon angioplasty (with or without placement of stents), atherectomy (arterial plaque removal), or other techniques involving use of a catheter

**Proprotein convertase subtilisin/kexin type 9 (PCSK9),** enzyme which binds to the receptor for LDL-C on liver and other cell membranes, assisting in their breakdown and reducing the ingestion of LDL-particles from extracellular fluid into cells

**RNA (ribonucleic acid),** nucleic acid generally composed of a single polynucleotide strain of ribonucleotides, which is found in cells of both prokaryotes and eukaryotes. RNA is a vital component of protein synthesis

**ST-elevation myocardial infarction (STEMI),** patients presenting with acute chest pain and persistent (>20 min) ST-segment elevation, generally reflecting an acute total or subtotal coronary occlusion.

# Abbreviations

| ACS   | Acute coronary syndromes               | MI       | Myocardial infarction                          |
|-------|----------------------------------------|----------|------------------------------------------------|
| ACC   | American College of Cardiology         | МоА      | Mechanism of action                            |
| AHA   | American Heart Association             | NSTE-ACS | Non-ST-segment elevation ACS                   |
| ASCVD | Atherosclerotic cardiovascular disease | NSTEMI   | Non-ST-segment elevation myocardial infarction |
| CABG  | Coronary artery bypass graft           | PCI      | Percutaneous coronary intervention             |
| CV    | Cardiovascular                         | PCSK9    | Proprotein convertase subtilisin/kexin type 9  |
| ESC   | European Society of Cardiology         | RNA      | Ribonucleic acid                               |
| LDL   | Low-density lipoprotein                | siRNA    | Small interfering RNA                          |
| LDL-C | Low-density lipoprotein cholesterol    | STEMI    | ST-segment elevation myocardial infarction     |
| mAb   | Monoclonal antibody                    |          |                                                |
|       |                                        |          |                                                |

# References

- Greenhalgh J, Bagust A, Boland A, et al. Prasugrel (Efient<sup>®</sup>) with percutaneous coronary intervention for treating acute coronary syndromes (review of TA182): systematic review and economic analysis. Health Technol Assess. 2015;19(29):1-130. DOI:10.3310/hta19290
- Fox KAA, Anderson FA, Goodman SG, et al. Time course of events in acute coronary syndromes: implications for clinical practice from the GRACE registry. Nat Clin Pract Cardiovasc Med. 2008;5(9):580-589. DOI:10.1038/ncpcardio1302
- Sangu PV, Ranasinghe I, Aliprandi Costa B, et al. Trends and predictors of rehospitalisation following an acute coronary syndrome: report from the Australian and New Zealand population of the Global Registry of Acute Coronary Events (GRACE). Heart. 2012;98(23):1728-1731. DOI:10.1136/heartjnl-2012-302532
- Koskinas KC, Siontis GCM, Piccolo R, et al. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur Heart J. 2018;39(14):1172-1180. DOI:10.1093/eurheartj/ehx566
- Silverman MG, Ference BA, Im K, et al. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA. 2016;316(12):1289. DOI:10.1001/ jama.2016.13985
- Wang N, Fulcher J, Abeysuriya N, et al. Intensive LDL cholesterollowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327 037 participants. Lancet Diabetes Endocrinol. 2020;8(1):36-49. DOI:10.1016/S2213-8587(19)30388-2

- Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-177. DOI:10.1093/eurheartj/ehx393
- Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. DOI:10.1093/ eurheartj/ehaa575
- Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/ AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285-e350. DOI:10.1016/j.jacc.2018.11.003
- Čeponienė I, Žaliaduonytė-Pekšienė D, Gustienė O, Tamošiūnas A, Žaliūnas R. Association of major cardiovascular risk factors with the development of acute coronary syndrome in Lithuania. European Heart Journal Supplements. 2014;16(suppl\_A):A80-A83. DOI:10.1093/eurheartj/sut017
- Ray KK, Molemans B, Schoonen WM, et al. EU-Wide Cross-Sectional Obserational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: the DA VINCI study. Eur J of Prev Cardiol 2020. DOI:10.1093/eurjpc/zwaa047
- Bruckert E, Parhofer KG, Gonzalez-Juanatey JR, et al. Proportion of High-Risk/Very High-Risk Patients in Europe with Low-Density Lipoprotein Cholesterol at Target According to European Guidelines: A Systematic Review. Adv Ther. 2020;37(5):1724-1736. DOI:10.1007/s12325-020-01285-2





- Allahyari A, Jernberg T, Lautsch D, et al. Low-density lipoproteincholesterol target attainment according to the 2011 and 2016 ESC/ EAS dyslipidaemia guidelines in patients with a recent myocardial infarction: nationwide cohort study, 2013–17. Eur Heart J Qual Care Clin Outcomes. 2021;7(1):59-67. DOI:10.1093/ehjqcco/qcaa016
- Sabatine MS. PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol. 2019;16(3):155-165. DOI:10.1038/s41569-018-0107-8
- 15. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911):60-68. DOI:10.1016/S0140-6736(13)61914-5
- Preiss D, Mafham M. PCSK9 inhibition: the dawn of a new age in cholesterol lowering? Diabetologia 2017; 60:381-389. DOI 10.1007/s00125-016-4178-y
- Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015;372(16):1500-1509. DOI:10.1056/NEJMoa1500858
- Robinson JG, Farnier M, Krempf M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015;372(16):1489-1499. DOI:10.1056/NEJMoa1501031
- Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-1722. DOI:10.1056/NEJMoa1615664
- Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. New England Journal of Medicine. 2018;379(22):2097-2107. DOI:10.1056/NEJMoa1801174
- Khan SA, Naz A, Qamar Masood M, Shah R. Meta-Analysis of Inclisiran for the Treatment of Hypercholesterolemia. Am J Cardiol. 2020;134:69-73. DOI:10.1016/j.amjcard.2020.08.018
- 22. Yu M, Liang C, Kong Q, Wang Y, Li M. Efficacy of combination therapy with ezetimibe and statins versus a double dose of statin monotherapy in participants with hypercholesterolemia: a metaanalysis of literature. Lipids Health Dis. 2020;19(1):1. DOI:10.1186/ s12944-019-1182-5
- Masana L, Ibarretxe D, Plana N. Maximum Low-density Lipoprotein Cholesterol Lowering Capacity Achievable With Drug Combinations. When 50 Plus 20 Equals 60. Rev Esp Cardiol (Engl Ed). 2016;69(3):342-343. DOI:10.1016/j.rec.2015.11.014
- 24. Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541-2548. DOI:10.1016/j.jacc.2014.03.019
- 25. Nissen SE, Stroes E, Dent-Acosta RE, et al. Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients With Muscle-Related Statin Intolerance: The GAUSS-3 Randomized Clinical Trial. JAMA. 2016;315(15):1580-1590. DOI:10.1001/jama.2016.3608
- 26. Moriarty PM, Thompson PD, Cannon CP, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9(6):758-769. DOI:10.1016/j. jacl.2015.08.006
- Gouni-Berthold I, Descamps OS, Fraass U, et al. Systematic review of published Phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br J Clin Pharmacol. 2016;82(6):1412-1443. DOI:10.1111/bcp.13066
- Lindgren P, Hagstrom E, Van Hout B, et al. P1225Cost-effectiveness of evolocumab in patients with high atherosclerotic cardiovascular risk in Sweden. European Heart Journal. 2019;40(ehz748.0183). DOI:10.1093/eurheartj/ehz748.0183
- Fonarow GC, Keech AC, Pedersen TR, et al. Cost-effectiveness of Evolocumab Therapy for Reducing Cardiovascular Events in Patients With Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2017;2(10):1069-1078. DOI:10.1001/jamacardio.2017.2762
- Bhatt DL, Briggs AH, Reed SD, et al. Cost-Effectiveness of Alirocumab in Patients With Acute Coronary Syndromes. Journal of the American College of Cardiology. 2020;75(18):2297-2308. DOI:10.1016/j.jacc.2020.03.029

- **31.** Villa G, Lothgren M, Kutikova L, et al. Cost-effectiveness of Evolocumab in Patients With High Cardiovascular Risk in Spain. Clinical Therapeutics. 2017;39(4):771-786.e3. DOI:10.1016/j. clinthera.2017.02.011
- Lee TC, Kaouache M, Grover SA. Evaluation of the costeffectiveness of evolocumab in the FOURIER study: a Canadian analysis. CMAJ Open. 2018;6(2):E162-E167. DOI:10.9778/ cmajo.20180011
- Fonarow GC, van Hout B, Villa G, Arellano J, Lindgren P. Updated Cost-effectiveness Analysis of Evolocumab in Patients With Very High-risk Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2019;4(7):691-695. DOI:10.1001/jamacardio.2019.1647
- 34. Borissov B, Urbich M, Georgieva B, Tsenov S, Villa G. Costeffectiveness of evolocumab in treatment of heterozygous familial hypercholesterolaemia in Bulgaria: measuring health benefit by effectively treated patient-years. J Mark Access Health Policy. 2017;5(1):1412753. DOI:10.1080/20016689.2017.1412753
- **35.** Koskinas KC, Windecker S, Pedrazzini G, et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). Journal of the American College of Cardiology. 2019;74(20):2452-2462. DOI:10.1016/j. jacc.2019.08.010
- 36. Gencer B, Koskinas KC, R\u00e4ber L, et al. Eligibility for PCSK9 Inhibitors According to American College of Cardiology (ACC) and European Society of Cardiology/European Atherosclerosis Society (ESC/ EAS) Guidelines After Acute Coronary Syndromes. Journal of the American Heart Association. 2017;6(11). DOI:10.1161/ JAHA.117.006537
- Patti G, Cannon CP, Murphy SA, et al. Clinical benefit of statin pretreatment in patients undergoing percutaneous coronary intervention: a collaborative patient-level meta-analysis of 13 randomized studies. Circulation. 2011;123(15):1622-1632. DOI:10.1161/CIRCULATIONAHA.110.002451
- 38. Ma M, Bu L, Shi L, et al. Effect of loading dose of atorvastatin therapy prior to percutaneous coronary intervention in patients with acute coronary syndrome: a meta-analysis of six randomized controlled trials. DDDT. 2019;Volume 13:1233-1240. DOI:10.2147/ DDDT.S196588
- 39. Soud M, Ho G, Kuku KO, Hideo-Kajita A, Waksman R, Garcia-Garcia HM. Impact of statins preloading before PCI on periprocedural myocardial infarction among stable angina pectoris patients undergoing percutaneous coronary intervention: A meta-analysis of randomized controlled trials. Cardiovascular Revascularization Medicine. 2018;19(8):971-975. DOI:10.1016/j.carrev.2018.07.016
- 40. He W, Cao M, Li Z. Effects of different doses of atorvastatin, rosuvastatin, and simvastatin on elderly patients with STelevation acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). Drug Dev Res. 2020;81(5):551-556. DOI:10.1002/ddr.21651
- Berwanger O, Santucci EV, de Barros E Silva PGM, et al. Effect of Loading Dose of Atorvastatin Prior to Planned Percutaneous Coronary Intervention on Major Adverse Cardiovascular Events in Acute Coronary Syndrome: The SECURE-PCI Randomized Clinical Trial. JAMA. 2018;319(13):1331-1340. DOI:10.1001/ jama.2018.2444
- Leucker TM, Blaha MJ, Jones SR, et al. Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period: A Placebo-Controlled, Randomized Trial. Circulation. 2020;142(4):419-421. DOI:10.1161/CIRCULATIONAHA.120.046320
- Olsson AG, Angelin B, Assmann G, et al. Can LDL cholesterol be too low? Possible risks of extremely low levels. J Intern Med. 2017;281(6):534-553. DOI:10.1111/joim.12614
- Faselis C, Imprialos K, Grassos H, Pittaras A, Kallistratos M, Manolis A. Is very low LDL-C harmful? CPD. 2019;24(31):3658-3664. DOI:10 .2174/1381612824666181008110643
- Karagiannis AD, Mehta A, Dhindsa DS, et al. How low is safe? The frontier of very low (<30 mg/dL) LDL cholesterol. European Heart Journal. Published online January 19, 2021:ehaa1080. DOI:10.1093/eurheartj/ehaa1080
- Katzmann JL, Gouni-Berthold I, Laufs U. PCSK9 Inhibition: Insights From Clinical Trials and Future Prospects. Front Physiol. 2020;11:595819. DOI:10.3389/fphys.2020.595819





- Giugliano RP, Mach F, Zavitz K, et al. Cognitive Function in a Randomized Trial of Evolocumab. New England Journal of Medicine. 2017;377(7):633-643. DOI:10.1056/NEJMoa1701131
- 48. Gürgöze MT, Muller-Hansma AHG, Schreuder MM, Galema-Boers AMH, Boersma E, Roeters van Lennep JE. Adverse Events Associated With PCSK9 Inhibitors: A Real-World Experience. Clin Pharmacol Ther. 2019;105(2):496-504. DOI:10.1002/cpt.1193
- 49. Barrios V, Escobar C, Arrarte V, et al. First national registry on the effectiveness and safety of evolocumab in clinical practice in patients attended in cardiology in Spain. The RETOSS-CARDIO study. Clínica e Investigación en Arteriosclerosis (English Edition). 2020;32(6):231-241. DOI:10.1016/j.artere.2020.11.001
- Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA. 2016;316(22):2373. DOI:10.1001/jama.2016.16951
- Ako J, Hibi K, Tsujita K, et al. Effect of Alirocumab on Coronary Atheroma Volume in Japanese Patients With Acute Coronary Syndrome - The ODYSSEY J-IVUS Trial. Circ J. 2019;83(10):2025-2033. DOI:10.1253/circj.CJ-19-0412