COR2ED THE HEART OF MEDICAL EDUCATION

OVERCOMING COMMON CHALLENGES ENCOUNTERED IN THE DIAGNOSIS OF RARE BONE DISEASE

> AN INDEPENDENT SYMPOSIUM 23rd May 2022


DISCLAIMER

- This Rare Bone Disease Pharmaceutical Consortium medical education symposium is provided by COR2ED, with an independent medical sponsorship from Ipsen, Alexion, and Kyowa Kirin
- The programme is therefore independent; the content is not influenced by the Rare Bone Disease Pharmaceutical Consortium and is the sole responsibility of the experts
- The pharmaceutical companies that compose the consortium are committed to joining forces to raise awareness of rare bone disease through medical education, with the intention of improving outcomes in rare bone diseases and quality of life for people living with them
- Please note: The views expressed within this presentation are the personal opinions of the experts. They do not necessarily represent the views of the experts' academic institutions or the rest of the faculty

EXPERT FACULTY

Lothar Seefried

Würzburg, Germany

Common challenges encountered in the diagnosis of rare bone disease:

CHALLENGES IN FIBRODYSPLASIA OSSIFICANS PROGRESSIVA (FOP)

Professor Richard Keen

Royal National Orthopaedic Hospital, London, UK

richard.keen1@nhs.net

DISCLOSURES

- Research grants & educational grants:
 - Ipsen, Kyowa Kirin, Mereo BioPharma, Regeneron Pharmaceuticals
- Speakers Fees:
 - Amgen, UCB
- Consultancies:
 - Alexion Pharmaceuticals, Ipsen, Kyowa Kirin
- Other
 - Brittle Bone Society Scientific Advisory Board, International Clinical Council on FOP, Royal Osteoporosis Society Bone Academy

What is Fibrodysplasia Ossificans Progressiva?

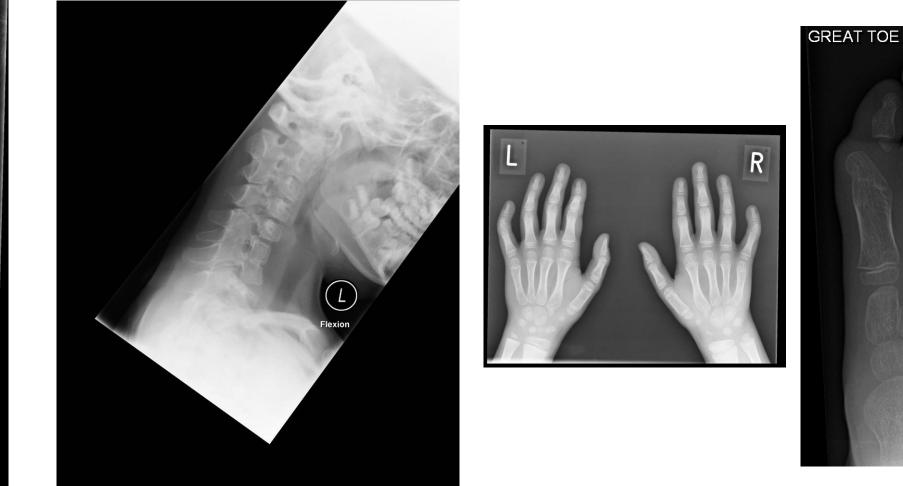
- Fibrodysplasia ossificans progressiva (FOP) (OMIM #135100) is a rare, severely disabling disease characterised by malformed big toes and progressive heterotopic ossification (HO) in muscles, tendons, and ligaments; it is often associated with painful, recurrent episodes of soft tissue swelling (flare-ups)
- The apparent prevalence of registered and confirmed FOP patients varies substantially from approximately 0.65 per million in North America, 0.47 per million in Western Europe, and 0.27 per million in Latin America, to 0.05 per million in Africa and nearly 0.04 per million in the Asia-Pacific region¹
- Prevalence estimates are hampered by the ultra-rarity of FOP, heterogeneity of the disease, and access to medical services with appropriate diagnostic services

Malformation of Big Toes

OMIM[®]

Cytogenetic locations: 7p21.1, 10g26.13

Online Mendelian Inheritance in Man®


An Online Catalog of Human Genes and Genetic Disorders Updated April 27, 2022

Ab	out Statis	tics 🗸	Downloads 🗸	Contact Us	MIMmatch	Donate 🗸	Help 🗸	?
"hal	llux valgus"					Q Opti		View Results as: Gene Map Table Clinical Synopsis Display: Mighlights
	rch: '''hallux ults: 55 entri	0		100 Downloa	ad As 🗕 « Firs	st < Previous	Next→	Last »
1:	Cytogenetic Matching te	location: rms: "hall	1	ME; CHYTS				
2:	Cytogenetic Matching te	location: rms: "hall	AMILY bHLF 7p21.1, Genomic ux valgus" onships ► ICD+	c coordinates (0				
3:	211910. CA Matching ter ► ICD+ ► Lin	rms: "hall	DACTYLY SY ux valgus"	NDROME, C	GUADALAJA	ARA, TYPE I	; GCS1	
4:			RE-CHOTZEN SYNDROME WIT		1.1	UDED		

Radiological Features

50 mr

Royal National Orthopaedic Hospital **NHS Trust**

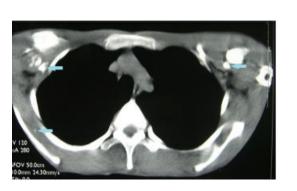
Keen, R. Personal communication

Genetic Diagnosis

- The diagnosis of FOP is clinical, but requires genetic confirmation
- FOP is caused by heterozygous activating mutations in activin A receptor, type I/activin-like kinase 2 (ACVR1/ALK2), which is a bone morphogenetic protein (BMP) type I receptor

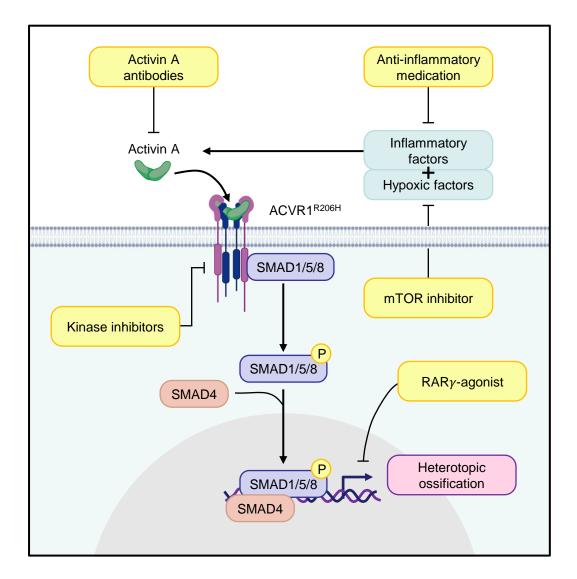
- The most authoritative indicator is the detection of the ACVR1 gene mutation
 - ~97% of cases have the classic c.617G>A mutation resulting in the substitution of arginine by histidine at codon 206 (p.R206H)

FOP, fibrodysplasia ossificans progressive Kaplan FS, et al. Hum Mutat. 2009;30(3):379–390; Whyte MP, et al. J Bone Miner Res. 2012; 27 (3): 729-37


Patient Case – Genetic Confirmation

- Boy 16 yrs who had suffered from pain and swelling in the biopsy site for two months
- Initial tender stiffness of shoulders and back developed at age 9
- Physical exam presented serious stiffness and multiple bony masses in the body, with his bilateral halluces characterized by hallux valgus deformity and macrodactyly
- Imaging examinations showed widespread HO
- Normal lab results except for alkaline phosphatase
- de novo heterozygous mutation (c.617G > A; p.R206H) was found in the ACVR1/ALK2 using gene sequencing
- FOP diagnosis confirmed

ER, emergency room Tian S, et al. BMC Med Genet 2018; 19: 30


Royal National Orthopaedic Hospital

Patient

Pathological Pathway leading to Heterotopic Ossification

Adapted from: Smilde B, et al. Orthop Res Rev. 2022;14:113-120

Royal National Orthopaedic Hospital **NHS Trust**

Symptom Onset

 Pignolo et al. Orphanet Journal of Rare Diseases
 (2019) 14:98

 https://doi.org/10.1186/s13023-019-1068-7

Orphanet Journal of Rare Diseases

Open Access

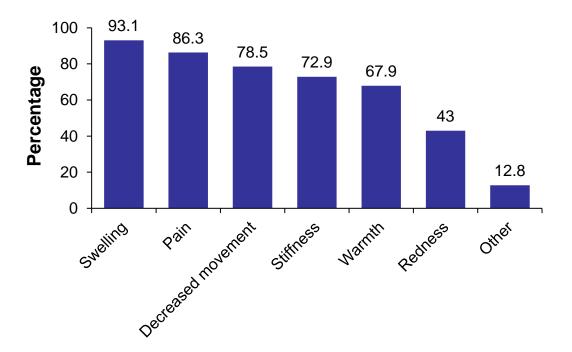
Check for updates

RESEARCH

Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes

Robert J. Pignolo^{1*}, Geneviève Baujat², Matthew A. Brown³, Carmen De Cunto⁴, Maja DiRocco⁵, Edward C. Hsiao⁶, Richard Keen⁷, Mona Al Mukaddam⁸, Kim-Hanh Le Quan Sang², Amy Wilson⁹, Barbara White⁹, Donna R. Grogan⁹ and Frederick S. Kaplan^{10*}

Demographic and baseline disease by age category

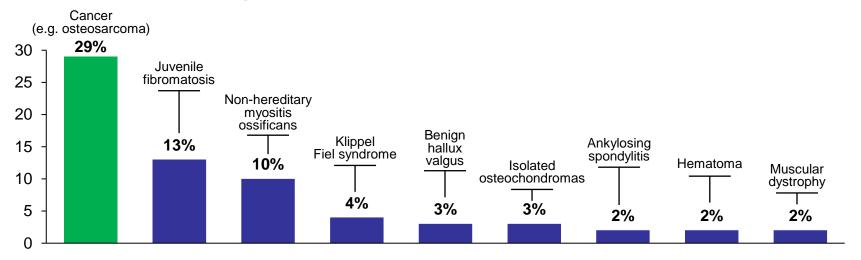

	<8 years (N=17)	8 to <15 years (N=36)	15 to <25 years (N=27)	≥25 to ≤65 years (N=27)	Total (N=114)
Males, n (%)	9 (52.9)	24 (66.7)	16 (47.1)	13 (48.1)	62 (54.4)
Age (years) Mean ± SD Median (min, max)	5.9 ± 1.1 6.0 (4, 7)	11.4 ± 2.1 11.0 (8, 14)	18.9 ± 3.1 18.5 (15, 24)	31.7 ± 6.7 30.0 (25, 56)	17.6 ± 9.7 15.0 (4, 56)
Age at 1st flare-up Mean ± SD Median (min, max)	2.9 ± 2.1 2.0 (1, 6)	4.4 ± 3.6 4.0 (0, 13)	5.6 ± 4.8 3.5 (0, 17)	7.1 ± 5.0 5.0 (0, 20)	5.2 ± 4.4 4.0 (0, 20)

Royal National Orthopaedic Hospital



Recognition of Disease Flare-Ups

The majority of patients report swelling, pain, decreased movement, warmth, and redness as prominent symptoms of a flare-up.


Most patients reported confirmation of a flare-up within two days of onset of symptoms.

Misdiagnosis is Common in FOP

- Approximately 53% of patients are misdiagnosed worldwide which can lead to unnecessary surgical intervention and disastrous results of early disability
- Mistaken diagnoses: aggressive juvenile fibromatosis, lymphoedema, soft tissue sarcoma

Most common misdiagnoses in FOP⁴

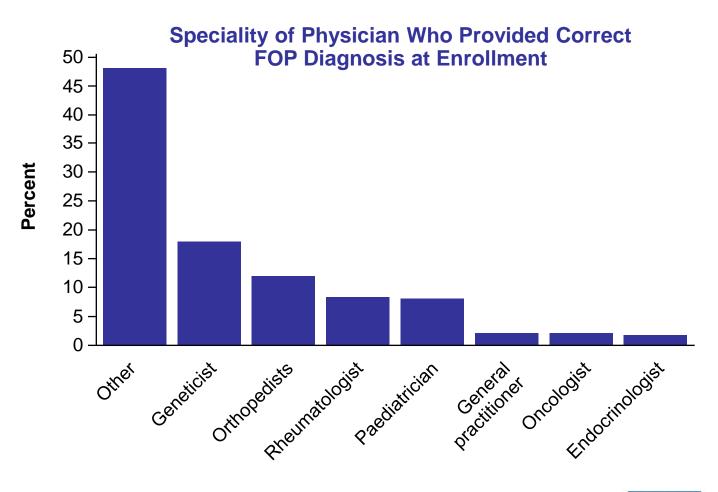
FOP, fibrodysplasia ossificans progressiva Sherman A, et al. JBMR 2020; 35: S1 (P-841) 2020 FOP Registry Annual Report - IFOPA - International Fibrodysplasia Ossificans Progressiva Association, Accessed 12-May-2022

Royal National Orthopaedic Hospital

Risks of Surgery and Biopsy

- 25% of those who had received an intramuscular injection reported an immediate flare-up at the injection site, 84% of whom developed HO¹
- Orthopaedic surgeries to remove HO or to correct deformities in the extremities or trunk have been reported, but most of them led to HO and worsening of motion/deformity; there is 100% risk of recurrence of HO after jaw surgery, which should be highly discouraged^{2,3}

- 2. Kaplan FS, et al. Proc Intl Clin Council FOP. 2019;1:1-111;
- 3. Eekhoff EMW, et al. JBMR Plus. 2017;2:55-8

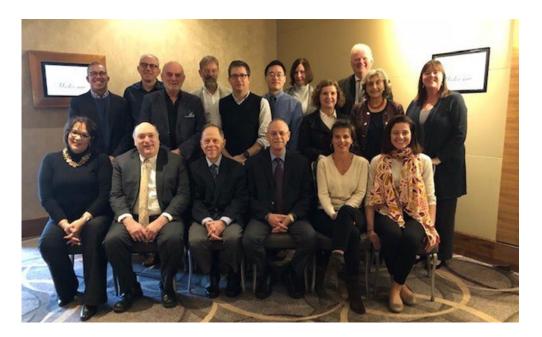

HO, heterotopic ossification

^{1.} Pignolo RJ, et al. J Bone Miner Res. 2016;31:650-6;

Patients Come into Contact with a Number of Specialists during their Journey

Approximately one quarter of Registry participants first sought care from a paediatrician for their FOP symptoms

Only 8% of participants reported that a paediatrician provided their correct diagnosis.


Sherman A, et al. JBMR 2020; 35: S1 (P-841)

Scientific poster example (d3n8a8pro7vhmx.cloudfront.net), Accessed 12-May-2022

Royal National Orthopaedic Hospital

Finding an Expert

номе	INTERNATIONAL CLI FIBRODYSPLASIA OSSI	
FOP EMERGENCY MEDICAL CARE INFORMATION AND EXECUTIVE SUMMARY THE FOP TREATMENT GUIDELINES COVID AND FOP INFORMATION 	Updated COVID Recommendations January 2022 Learn More	Updated FOP Treatment Guidelines January 2022 Learn More

Patient Support

 Patients and their families should be informed about the International Clinical Council on FOP, the International FOP Association (IFOPA), and country-specific support groups at the time of diagnosis

 Forner
 Forner

 NEDERLAND
 Fornark & Finland

FUND RESEARCH, FIND A CURE, SUPPORT FAMILIES ... WORLDWIDE

ONLUS

M

Δ

N

Italia

FOP, fibrodysplasia ossificans progressiva

Royal National Orthopaedic Hospital

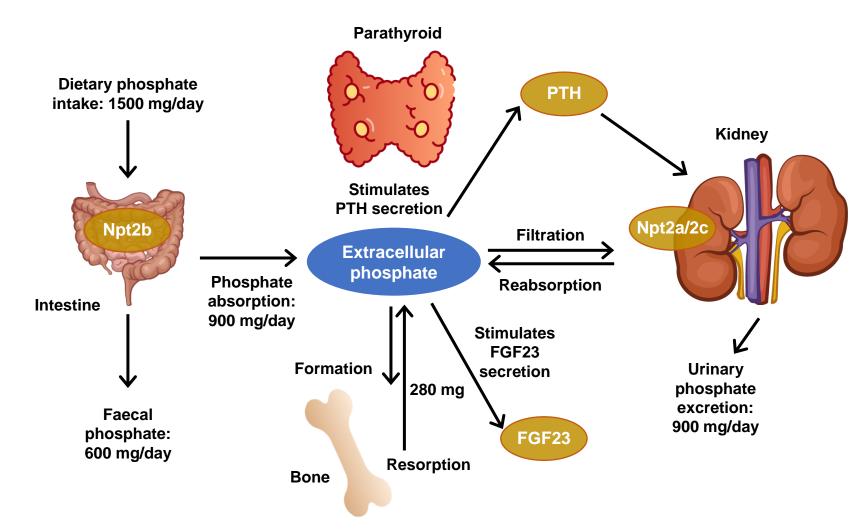
Summary

- Recognition of greater toe abnormalities at birth should raise suspicion of FOP
- FOP can be confirmed with genetic testing of ACVR1
- Avoid biopsies, surgery to remove heterotopic ossifications and IM injections/vaccines
- Refer patient to expert clinician for further advice and management

FGF23-RELATED HYPOPHOSPHATAEMIC RICKETS/OSTEOMALACIA

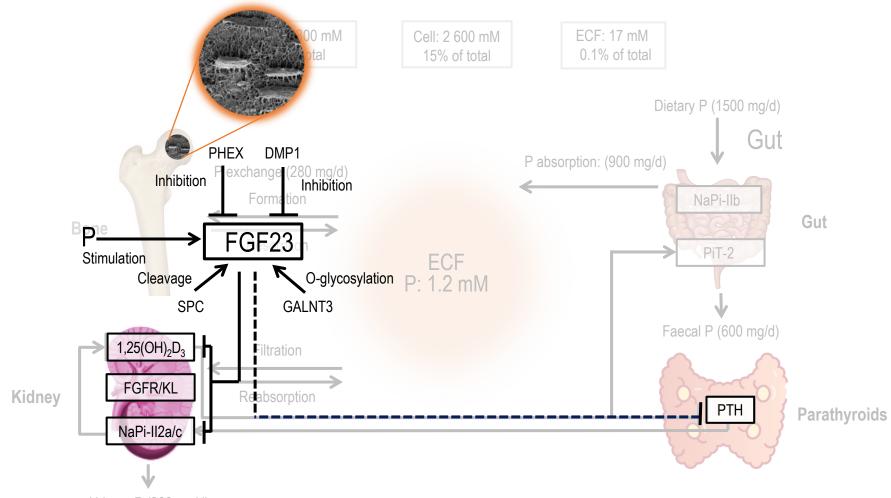
Maria Luisa Brandi MD, PhD FIRMO Foundation

Florence, Italy



- Dr Brandi has received honoraria from Amgen, Bruno Farmaceutici, Calcilytix, Kyowa Kirin, UCB
- Grants and/or speaker: Abiogen, Alexion, Amgen, Amolyt, Amorphical, Bruno Farmaceutici, CoGeDi, Echolight, Eli Lilly, Enterabio, Gedeon Richter, Italfarmaco, Kyowa Kirin, Menarini, Monte Rosa, SPA, Takada, Theramex, UCB
- Consultant: Aboca, Alexion, Amolyt, Bruno Farmaceutici, Calcilytix, Echolight, Kyowa Kirin, Personal Genomics, UCB

PHOSPHATE HOMEOSTASIS IN NORMAL PHYSIOLOGY



FGF23, fibroblast growth factor 23; Npt2b/2c, sodium-dependent phosphate transport protein 2b/2c; PTH, parathyroid hormone Adapted from: Komaba H, Fukagawa M. Kidney Int. 2016;90:753-63

PHOSPHATE HOMEOSTASIS IN NORMAL PHYSIOLOGY

Urinary P (900 mg/d)

DMP1, dentin matrix acidic phosphoprotein 1; ECF, extracellular fluid; FGF23, fibroblast growth factor 23; FGFR/KL, fibroblast growth factor receptor klotho; GALNT3, polypeptide N-acetylgalactosaminyltransferase 3; P, phosphate; PHEX, phosphate regulating endopeptidase homolog X-linked; PTH, parathyroid hormone; SPC, subtilisin-like protein convertases

NORMAL RANGES FOR TMP/GFR (ADAPTED FROM CHONG ET AL.)

Age	Female mg/dL (mmol/L)	Male mg/dL (mmol/L)
Newborn	5.7-8.1 (1.	27-2.59)
1 month-2 years	3.6-5.4 (1.	15-1.73)
2-12 years	3.8-5.0 (1.	22-1.60)
12-16 years	3.4-4.6 (1.	09-1.47)
16-25 years	3.18-6.41 (1.01-2.05)	3.33-5.9 (1.07-1.89)
25-45 years	2.97-4.45 (0.95-1.42)	3.09-4.18 (0.99-1.34)
45-65 years	2.72-4.39 (0.87-1.40)	2.78-4.18 (0.89-1.34)
65-75 years	2.47-4.18 (0.79-1.34)	2.47-4.18 (0.79-1.34)

TmP/GFR, maximum tubular phosphate reabsorption to glomerular filtration rate Adapted from: Chong WH, et al. Endocr Relat Cancer. 2011;18:R53-77

FGF23: A NEW HORMONE

- Tissue source (bone), physiology (metabolism strictly controlled and action on kidney), biology (receptors are recognised)
- Implications for human diseases of FGF23 excess and deficiency
- Drug targets for FGF23-related disorders

Normal circulating levels of P in the adult:

2.5-4.5 mg/dL

Mechanisms that result in hypophosphataemia:

- Reduction of intestinal absorption
- Increase of renal excretion
- Redistribution of P inside the cells

Main causes of hypophosphataemia:

Mostly present in intensive care department

- Malnutrition
- Parenteral nutrition
- Alterations in the acid–basic equilibrium (i.e. acute respiratory alkalosis)
- Drugs

Often seen the bone disease specialist

- Primary or secondary hyperparathyroidism
- Hungry bone syndrome
- Osteomalacia
- Rickets
- Malabsorption
- Chronic use of thiazides
- Excessive use of antacids

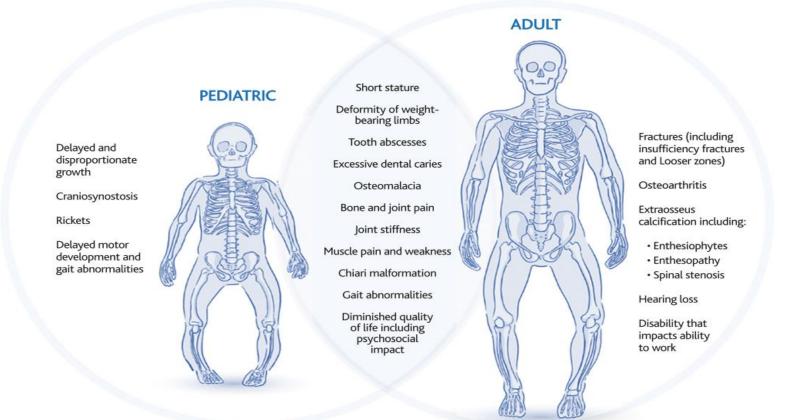
Steatorrhoea and chronic diarrhoea

BONE

Clinic

- Kidney tubulopathies
 - o FGF23
 - Secreted frizzled protein 4
 - o FGF7
 - Matrix extracellular phosphoglycoprotein

CAUSES OF DISEASES/CONDITIONS CHARACTERISED BY HYPOPHOSPHATAEMIA


Human disease	Cause/mechanism of disease
FGF23-associated hypophosphataemic conditions/diseases (high plasma FGF23)	
Genetic (hereditary) X-linked hypophosphataemia Autosomal dominant hypophosphataemic rickets Autosomal recessive hypophosphataemic rickets 1/osteomalacia Autosomal recessive hypophosphataemic rickets 2 Raine syndrome-associated hypophosphataemic rickets Osteoglophonic dysplasia	PHEX mutation FGF23 mutation DMP1 mutation ENPP1 mutation FAM20C mutation FGFR1 mutation
Genetic (mosaicism) Fibrous dysplasia/McCune-Albright syndrome Epidermal nevus syndrome	GNAS1 gain of function FGFR3 mutation
Sporadic/acquired Tumour-induced osteomalacia	FGF23-producing tumour
Drug-induced Chronic intravenous iron supplementation therapy-induced hypophosphataemia	Intravenous iron-induced increase in FGF23 levels (dependent on the type of intravenous iron, detailed mechanism not fully elucidated)
Non-FGF23-associated hypophosphatemic conditions/diseases (low-to-normal plasma FGF23)	
Genetic (hereditary) Hypophosphataemic rickets with hypercalciuria Infantile idiopathic hypercalcemia Genetic Fanconi syndrome (including Wilson's disease, Lowe syndrome, Dent's disease) Inherited Vitamin D-dependent rickets	<i>SLC34A3</i> (encoding the proximal tubule phosphate NaPi-IIc) loss of function <i>SLC34A1</i> (encoding the proximal tubule phosphate NaPi-IIc) mutation <i>CYP2R1</i> , <i>CYP27B1</i> , or <i>VDR</i> mutation
 Sporadic/acquired Primary hyperparathyroidism Secondary hyperparathyroidism due to nutritional phosphate, calcium, and/or vitamin D deficiencies Intracellular phosphate shift Acquired Fanconi syndrome 	PTH effect on sodium-phosphate cotransporters Lack of adequate sun exposure, dietary insufficiency, or malabsorptive disorders Insulin administration or refeeding after starvation, respiratory or metabolic alkalosis, drug-induced redistribution of phosphate, alcohol intake and withdrawal Direct renal tubular damage by a drug or toxin, which results in a generalized proxima tubulopathy

XLH RICKETS/OSTEOMALACIA

- The condition is congenital
- As the defect of mineralisation starts in the growing skeleton the resulting disease is usually rickets, but if bone abnormalities are not recognised in childhood the bone doctor will be the first to make the diagnosis

DIFFERENTLY TO XLH, TUMOUR-INDUCED OSTEOMALACIA (TIO) IS USUALLY DIAGNOSED IN THE ADULT

XLH ADULT Short stature PEDIATRIC Deformity of weightbearing limbs Fractures (including Tooth abscesses Delayed and insufficiency fractures disproportionate and Looser zones) Excessive dental caries growth Osteomalacia Osteoarthritis Craniosynostosis Bone and joint pain Extraosseus Rickets calcification including: Joint stiffness Delayed motor Enthesiophytes Muscle pain and weakness development and Enthesopathy gait abnormalities Chiari malformation Spinal stenosis Gait abnormalities Hearing loss Diminished quality of life including Disability that impacts ability psychosocial to work impact

ΤΙΟ

XLH, X-linked hypophosphataemia

Adapted from: Beck-Nielsen S, et al. Orphanet J Rare Dis. 2019;14:58; Florenzano P, et al. Bone Rep. 2017;7:90-7; Haffner D, et al. Nat Rev Nephrol. 2019;15:435-55; Minisola S, et al. Nat Rev Dis Primers. 2017;3:17044

CHARACTERISTICS OF INHERITED OR ACQUIRED CAUSES OF PHOSPHOPENIC RICKETS IN COMPARISON TO CALCIPENIC RICKETS

Disorder (abbreviation; OMIM#)	Gene (location)	Са	Ρ	ALP	U _{Ca}	U _P	TmP/ GFR	FGF23	PTH	25 (OH)Dª	1,25 (OH) ₂ D	Pathogenesis
Rickets and/or osteomalacia with hi	gh PTH levels	(calcipe	nic rickets)									
Nutritional rickets (vitamin D and/or calcium deficiency)	NA	N, ↓	N, ↓	$\uparrow \uparrow \uparrow$	Ļ	Varies	\downarrow	Ν	$\uparrow \uparrow \uparrow$	$\downarrow\downarrow$, N	Varies	Vitamin D deficiency
Vitamin-D-dependent rickets type 1A; (VDDR1A; OMIM#264700)	CYP27B1 (12q14.1)	\downarrow	N, ↓	$\uparrow \uparrow \uparrow$	Ļ	Varies	Ļ	N, ↓	$\uparrow \uparrow \uparrow$	Ν	Ļ	Impaired synthesis of 1,25(OH) ₂ D
Vitamin-D-dependent rickets type 1B; (VDDR1B; OMIM#600081)	<i>CYP2R1</i> (11q15.2)	\downarrow	N, ↓	$\uparrow \uparrow \uparrow$	Ļ	Varies	\downarrow	Ν	$\uparrow \uparrow \uparrow$	$\downarrow\downarrow$	Varies	Impaired synthesis of 25(OH)D
Vitamin-D-dependent rickets type 2A; (VDDR2A; OMIM#277440)	<i>VDR</i> (12q13.11)	\downarrow	N, ↓	$\uparrow \uparrow \uparrow$	Ļ	Varies	Ļ	N, ↓	$\uparrow \uparrow \uparrow$	Ν	$\uparrow \uparrow$	Impaired signalling of the VDR
Vitamin-D-dependent rickets type 2B; (VDDR2B; OMIM#164020)	<i>HNRNPC</i> (14q11.2)	\downarrow	N, ↓	$\uparrow \uparrow \uparrow$	Ļ	Varies	\downarrow	Ν	$\uparrow \uparrow \uparrow$	Ν	$\uparrow \uparrow$	Impaired signalling of the VDR
Vitamin-D-dependent rickets type 3; (VDDR3; OMIM# pending)	<i>CYP3A4</i> (7q21.1)	\downarrow	\downarrow	$\uparrow \uparrow \uparrow$	Ļ	Varies	\downarrow	?	$\uparrow \uparrow \uparrow$	\downarrow	Ļ	↑ Inactivation of 1,25(OH) ₂ D
Phosphopenic rickets and/or osteomalacia due to dietary phosphate deficiency or impaired bioavailability												
 Breastfed very-low-birthweight infants Use of elemental or hypoallergenic formula diet or parental nutrition Excessive use of phosphate binders Gastrointestinal surgery or disorders 	NA	N , ↑	ţ	↑,↑↑	?	Ļ	N ^b	N, ↓	N	Ν	N , ↑	Phosphate deficiency

^a Cave: prevalence of vitamin D deficiency was reported to be up to 50% in healthy children. ^b Normal after restoration of P, but falsely reduced before restoration.

↑, elevated; ↑↑ or ↑↑↑, very elevated; ↑(↑↑), might range widely; 1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, cholecalciferol; ALP, alkaline phosphatase;

Ca, serum levels of calcium; FGF23, fibroblast growth factor 23; N, normal; NA, not applicable; P, serum levels of phosphate; PTH, parathyroid hormone; TmP/GFR, maximum rate of renal tubular reabsorption of phosphate per glomerular filtration rate; U_{Ca}, urinary calcium excretion; U_P, urinary phosphate excretion; VDR, vitamin D receptor

Adapted from: Haffner D, et al. Nat Rev Nephrol. 2019;15:435-55

CHARACTERISTICS OF INHERITED OR ACQUIRED CAUSES OF PHOSPHOPENIC RICKETS IN COMPARISON TO CALCIPENIC RICKETS

Disorder (abbreviation; OMIM#)	Gene (location)	Са	Ρ	ALP	U _{Ca}	U _P	TmP/ GFR	FGF23	PTH	25 (OH)Dª	1,25 (OH)₂D	Pathogenesis
Phosphopenic rickets and/or osteom	Phosphopenic rickets and/or osteomalacia with renal tubular phosphate wasting due to elevated FGF23 levels and/or signalling											
XLH (OMIM#307800)	<i>PHEX</i> (Xp22.1)	Ν	Ļ	↑,↑↑	↓	Ţ	Ļ	↑, N	N, ↑ ^b	Ν	Nc	↑ FGF23 expression in bone and impaired FGF23 cleavage
Autosomal dominant hypophosphataemic rickets (ADHR; OMIM#193100)	<i>FGF</i> 23 (12p13.3)	Ν	\downarrow	↑,↑↑	\downarrow	↑	\downarrow	↑, N	N , ↑ ^b	Ν	Nc	FGF23 protein resistant to degradation
Autosomal recessive hypophosphataemic rickets 1 (ARHR1; OMIM#241520)	<i>DMP1</i> (4q22.1)	Ν	\downarrow	↑,↑↑	\downarrow	↑	\downarrow	↑, N	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in bone
Autosomal recessive hypophosphataemic rickets 2 (ARHR2; OMIM#613312)	<i>ENPP1</i> (6q23.2)	Ν	\downarrow	↑,↑↑	\downarrow	↑	\downarrow	↑, N	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in bone
Raine syndrome-associated (ARHR3; OMIM#259775)	<i>FAM20C</i> (7q22.3)	Ν	\downarrow	↑,↑↑	?	Ţ	\downarrow	↑, N	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in bone
Fibrous dysplasia (FD; OMIM#174800)	<i>GNAS</i> (20q13.3)	N, ↑	\downarrow	↑, ↑↑	\downarrow	↑	\downarrow	N, ↑	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in bone
TIO	NA	N, ↓	\downarrow	↑,↑↑	\downarrow	Ţ	\downarrow	N, ↑	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in tumoral cells
Cutaneous skeletal hypophosphataemia syndrome (SFM; OMIM#163200)	<i>RAS</i> (1p13.2)	N, ↓	\downarrow	↑,↑↑	\downarrow	↑	\downarrow	N, ↑	N , ↑ ^b	Ν	Nc	Unknown
Osteoglophonic dysplasia (OGD; OMIM#166250)	<i>FGFR1</i> (8p11.23)	N	\downarrow	↑, N	Ν	Ţ	\downarrow	Ν	N , ↑ ^b	Ν	Nc	↑ FGF23 expression in bone
Hypophosphataemic rickets and hyperparathyroidism (OMIM#612089)	KLOTHO (13q13.1)	Ν	↓	↑,↑↑	↓	Ţ	\downarrow	ſ	↑ ↑	Ν	Nc	Unknown; translocation of the KLOTHO promoter

^a Cave: prevalence of vitamin D deficiency was reported to be up to 50% in healthy children. ^b PTH might be moderately elevated. ^c Decreased relative to the serum phosphate concentration

↑, elevated; ↑↑ or ↑↑↑, very elevated; ↑(↑↑), might range widely; 1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, cholecalciferol; ALP, alkaline phosphatase;

Ca, serum levels of calcium; FGF23, fibroblast growth factor 23; N, normal; NA, not applicable; P, serum levels of phosphate; PTH, parathyroid hormone; TIO, Tumour-induced osteomalacia; TmP/GFR, maximum rate of renal tubular reabsorption of phosphate per glomerular filtration rate; U_{Ca}, urinary calcium excretion; U_P, urinary phosphate excretion; VDR, vitamin D receptor; XLH, X-linked hypophosphataemia

Adapted from: Haffner D, et al. Nat Rev Nephrol. 2019;15:435-55

CHARACTERISTICS OF INHERITED OR ACQUIRED CAUSES OF PHOSPHOPENIC RICKETS IN COMPARISON TO CALCIPENIC RICKETS

Disorder (abbreviation; OMIM#)	Gene (location)	Ca	Ρ	ALP	U _{Ca}	U _P	TmP/ GFR	FGF23	PTH	25 (OH)Dª	1,25 (OH) ₂ D	Pathogenesis
Phosphopenic rickets and/or osteomalacia due to primary renal tubular phosphate wasting												
Hereditary hypophosphataemic rickets with hypercalciuria (HHRH; OMIM#241530)	SLC34A3 (9q34.3)	Ν	Ļ	↑(↑↑)	N, ↑	ſ	Ļ	Ļ	Low N, ↓	Ν	↑ ↑	Loss of function of NaPi2c in the proximal tubule
X-linked recessive hypophosphataemic rickets (OMIM#300554)	<i>CLCN5</i> (Xp11.23)	Ν	Ļ	↑(↑↑)	N, ↑	ſ	↓	Varies	Varies	Ν	ſ	Loss of function of CLCN5 in the proximal tubule
Hypophosphataemia and nephrocalcinosis (NPHLOP1; OMIM#612286) and Fanconi reno-tubular syndrome 2 (FRTS2; OMIM#613388)	SLC34A1 (5q35.3)	Ν	Ļ	↑(↑↑)	Ŷ	Ţ	Ļ	Ļ	Varies	N	ſ	Loss of function of NaPi2a in the proximal tubule
Cystinosis (OMIM#219800) and other hereditary forms of Fanconi syndrome	<i>CTNS</i> (17p13.2)	N , ↓	Ļ	↑ (↑↑)	N, ↑	Ţ	N, ↓	N, ↑ ^b	N, ↑ ^b	N	Nc	Cysteine accumulation in the proximal tubule
latrongenic proximal tubulopathy	NA	Ν	\downarrow	↑(↑↑)	Varies	↑	\downarrow	\downarrow	Varies	Ν	↑	Drug toxicity

^a Cave: prevalence of vitamin D deficiency was reported to be up to 50% in healthy children. ^b Depending on the stage of chronic kidney disease. ^c Decreased relative to the serum phosphate concentration. ↑, elevated; ↑↑ or ↑↑↑, very elevated; ↑(↑↑), might range widely; 1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, cholecalciferol; ALP, alkaline phosphatase;

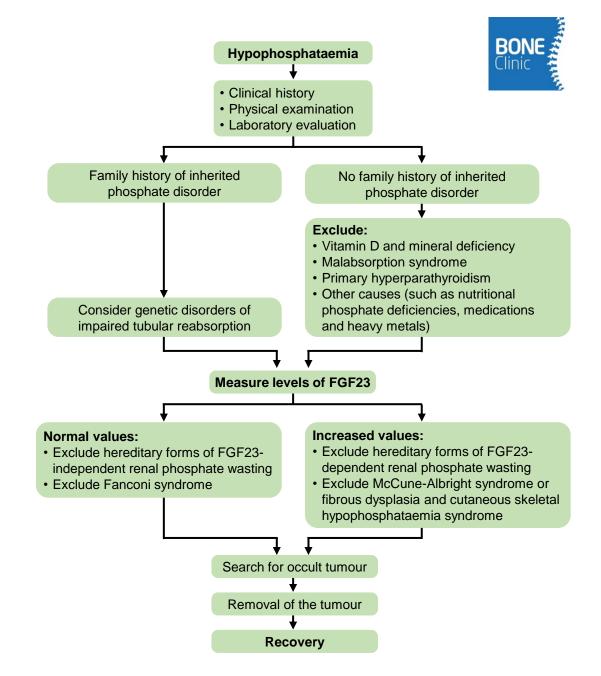
Ca, serum levels of calcium; FGF23, fibroblast growth factor 23; N, normal; NA, not applicable; P, serum levels of phosphate; PTH, parathyroid hormone; TmP/GFR, maximum rate of renal tubular reabsorption of phosphate per glomerular filtration rate; U_{Ca}, urinary calcium excretion; U_P, urinary phosphate excretion; VDR, vitamin D receptor

Adapted from: Haffner D, et al. Nat Rev Nephrol. 2019;15:435-55

A MISSING LINK: UNDERSTANDING X-LINKED HYPOPHOSPHATAEMIA AND FGF23-MEDIATED OSTEOMALACIA

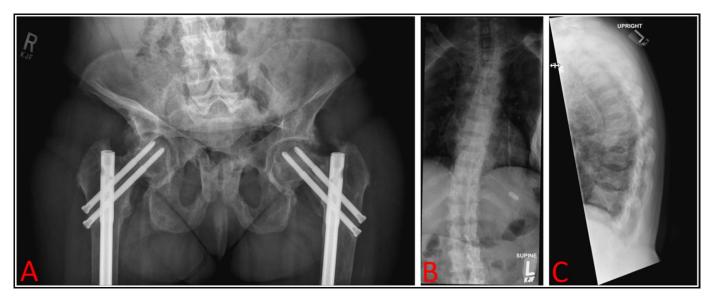
- Skeletal deformities in childhood and repeated unexplained fractures in later life are clues to rare bone disorders
- It is important to be aware of the clues to find the 'missing link' and refer the patient as early as possible for specialist investigation

HYPOPHOSPHATAEMIC CONDITIONS WITH RENAL TUBULAR PHOSPHATE WASTING DUE TO ELEVATED FGF23 LEVELS/SIGNALING

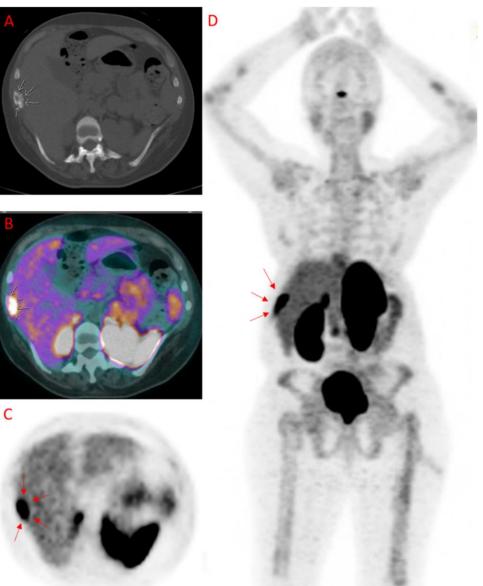

Disorder (abbreviation; OMIM#)	Gene/location	Pathogenesis
Congenital		
XLH (OMIM#307800)	PHEX/Xp22.1	↑ FGF23 expression in bone and impaired FGF23 cleavage
Autosomal dominant hypophosphataemic rickets (ADHR; OMIM#193100)	FGF23/12p13.3	FGF23 protein resistant to degradation
Autosomal recessive hypophosphataemic rickets 1 (ARHR1; OMIM#241520)	DMP1/4q22.1	\uparrow FGF23 expression in bone
Autosomal recessive hypophosphataemic rickets 2 (ARHR2; OMIM#613312)	ENPP1/6q23.2	\uparrow FGF23 expression in bone
Raine syndrome associated (ARHR3; OMIM#259775)	FAM20C/7q22.3	\uparrow FGF23 expression in bone
Fibrous dysplasia (FD; OMIM#174800)	GNAS/20q13.3	\uparrow FGF23 expression in bone
Cutaneous skeletal hypophosphataemia syndrome (SFM; OMIM#163200)	RAS/1p13.2	?
Osteoglophonic dysplasia (OGD; OMIM#166250)	FGFR1/8p11.23	\uparrow FGF23 expression in bone
Hypophosphataemic rickets and hyperparathyroidism (OMIM#612089)	KLOTHO/13q13.1	Unknown; translocation of the KLOTHO promoter
Acquired		
ΤΙΟ	NA	↑ FGF23 and other phosphatonins expression in the tumour

FGF23, fibroblast growth factor 23; TIO, tumour induced osteomalacia; XLH, X-linked hypophosphataemia Adapted from: Haffner D, et al. Nat Rev Nephrol. 2019;15:435-55

TUMOUR-INDUCED OSTEOMALACIA (TIO)


- Rare paraneoplastic syndrome with overproduction of phosphaturic hormones, as FGF23, by tumours (the majority are mesenchymal in nature)
- The disorder is usually described in adults, and an algorithm for its management has been published

MISDIAGNOSIS: TIO MASQUERADING AS XLH


41-year-old female. Prior diagnosis of hypophoshataemic rickets

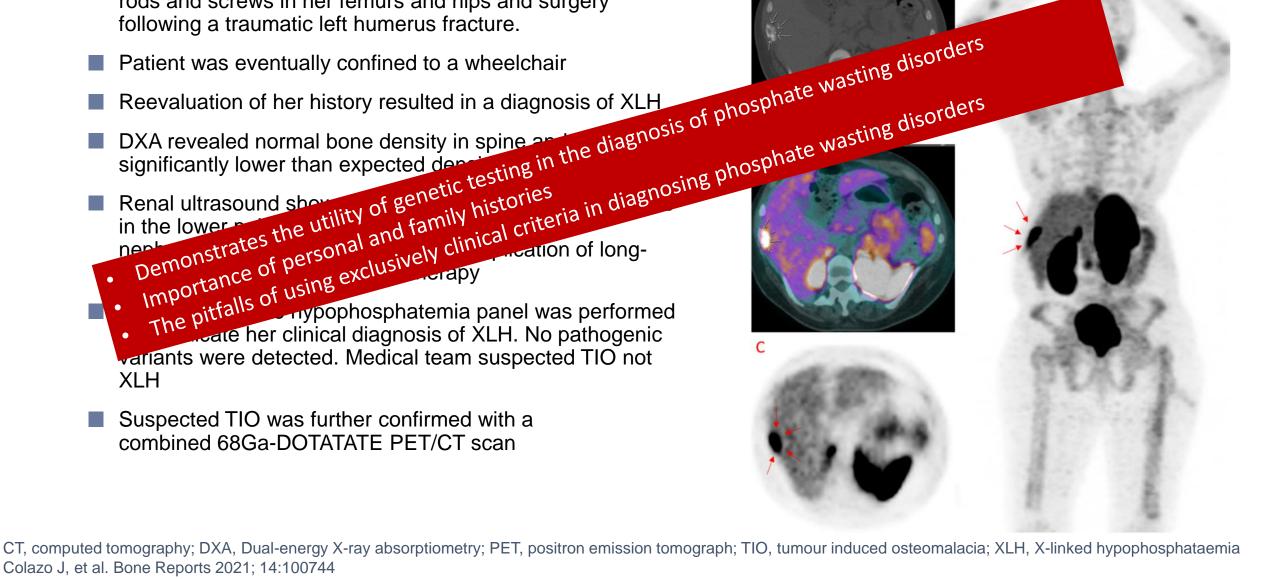
- 26-year history of low phosphorus, bone pain, proximal muscle weakness, gait abnormalities, multiple traumatic and insufficiency fractures
- Lost all secondary teeth. No family history of low phosphorus
- Maximum height 5'2" but presented at 4'8" due to progressive spine deformities
- Developed progressive gait abnormalities and decreased hip strength
- Sustained bilateral hip fractures and small fractures throughout her spine despite intermittent treatment with conventional therapy with phosphorus supplements and calcitriol during her teens and 20's

MISDIAGNOSIS- TIO MASQUERADING AS XLH

- Patient deteriorated further over 10 years requiring stability rods and screws in her femurs and hips and surgery following a traumatic left humerus fracture.
- Patient was eventually confined to a wheelchair
- Reevaluation of her history resulted in a diagnosis of XLH
- DXA revealed normal bone density in spine and significantly lower than expected density in the forearm
- Renal ultrasound showed a 4-mm non-obstructing calculus in the lower pole of the right kidney, indicating nephrolithiasis, a well-documented complication of longterm phosphorus and calcitriol therapy
- A 13-gene Invitae hypophosphatemia panel was performed to adjudicate her clinical diagnosis of XLH. No pathogenic variants were detected. Medical team suspected TIO not XLH
- Suspected TIO was further confirmed with a combined 68Ga-DOTATATE PET/CT scan

CT, computed tomography; DXA, Dual-energy X-ray absorptiometry; PET, positron emission tomograph; TIO, tumour induced osteomalacia; XLH, X-linked hypophosphataemia Colazo J, et al. Bone Reports 2021; 14:100744

MISDIAGNOSIS- TIO MASQUERADING AS XLH


- Patient deteriorated further over 10 years requiring stability rods and screws in her femurs and hips and surgery following a traumatic left humerus fracture.

Importance of personal and family histories

variants were detected. Medical team suspected TIO not XLH

Suspected TIO was further confirmed with a combined 68Ga-DOTATATE PET/CT scan

Colazo J, et al. Bone Reports 2021; 14:100744

D

LIMITS IN THE MEASUREMENT OF FGF23

- Intact and C-terminal FGF23 concentrations are important in the diagnosis of hypo- and hyperphosphataemic diseases
- FGF23 is stable when stored at 4°C and 22°C for 48 hours
- FGF23 is stable under five freeze–thaw cycles
- Long-term storage at -80°C induces some variability
- Available assays do not give superimposable data

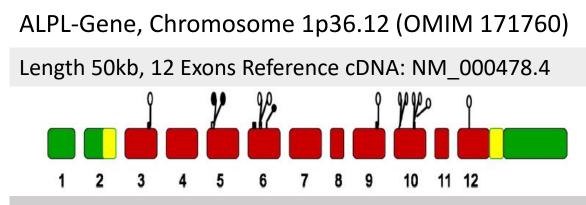
Sample type, handling, and choice of assay are factors that affect FGF23 levels

KEY SUMMARY POINTS

- FGF23 plays a central role in the mechanisms involved in disorders linked to phosphate wasting
- Differential diagnosis of FGF23-related rickets/osteomalacia should be incorporated in the educational background of the endocrinologist
- The bone doctor is a central figure in the management of these patients

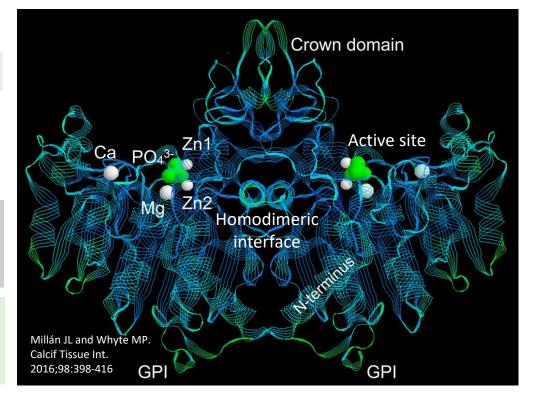
HYPOPHOSPHATASIA

Lothar Seefried

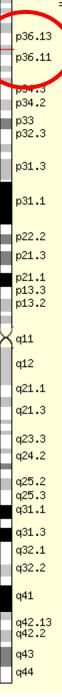

www.orthopaedie.uni-wuerzburg.de

Disclosures:

Honoraria for lectures and advice: AstraZeneca/Alexion, Amgen, Chiesi, GlaxoSmithKline, Ipsen, Kyowa Kirin, medi, STADA, Theramx and UCB.

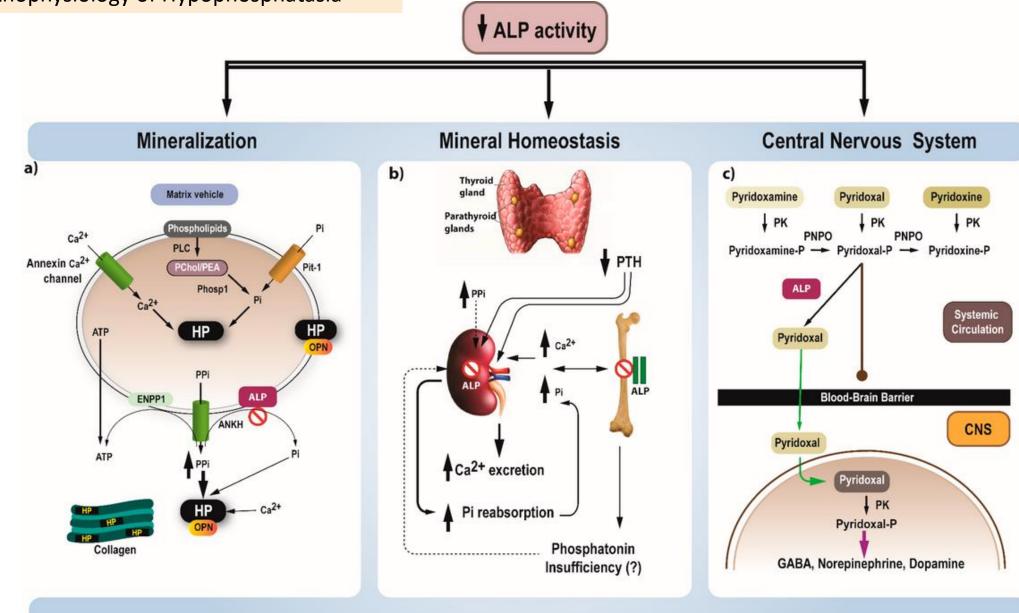

Support for scientific projects: AstraZeneca/Alexion, Kyowa Kirin and Novartis.

Genetic and Biochemical Background of HPP



Untranslated regions indicated by green colour. Signal peptide at amino terminus and hydrophobic stretch at the carboxyl terminus in exons 2 and 12, respectively, shown in yellow.

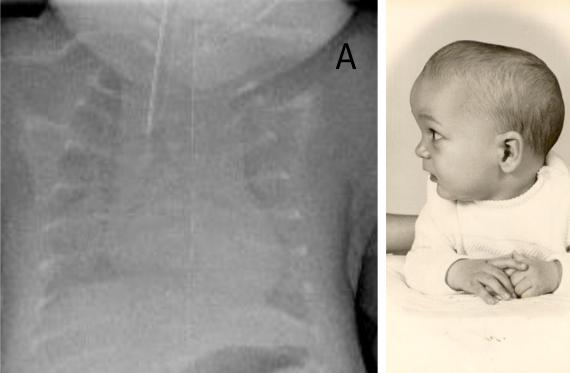
Post-translational modifications incl. five putative *N*-glycosylation sites (Asn140, Asn230, Asn271, Asn303, Asn430) and an undetermined *O*-glycosylation site.



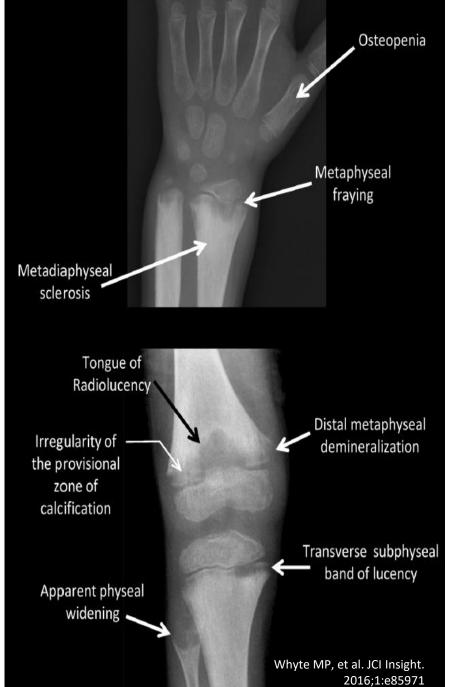
	HPP subtype	Severe	Moderate	Mild	Wild-type
rently (2022):	Inheritance	AR	AR or AD _{DNE}	AD _{haploinsuff}	-
> 400 known	Prevalence	1/300,000	1/2430	1/508	-
genetic variants Pathogenicity TBD	Actual classification	Perinatal, infantile	Infantile, childhood, odonto, adult (typical)	Adult (unspecific signs)	-
	Genotypes	s/s, Sd/S, Sd/Sd, m/m _{homoz}	Sd/m, s/m, Sd/N	s/N, m/N	N/N

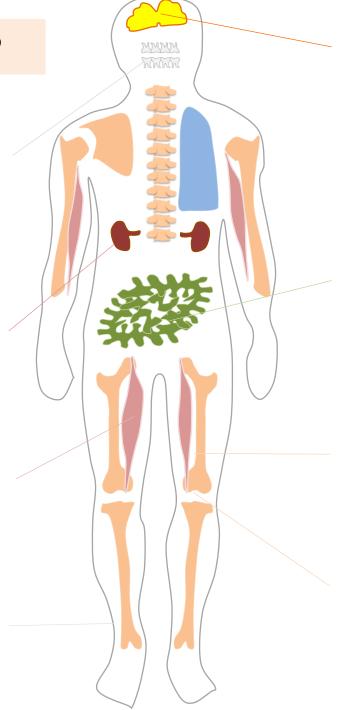
Curr

Pathophysiology of Hypophosphatasia



Tournis S, et al. J Clin Med. 2021;10:5676


Pediatric HPP


Clinical Picture in Adult HPP

Teeth: Tooth loss Periodontal disease

Kidney: Nephrocalcinosis Renal insufficiency Kidney stones

Muscle: Weakness Fatigue/induration

Tendons: Tendinosis calcarea Enthesiopathy Tendinitis/Enthesitis

CNS/sensory organs: Cephalgia/Migraine Depression/Anxiety Visual/auditory compromise

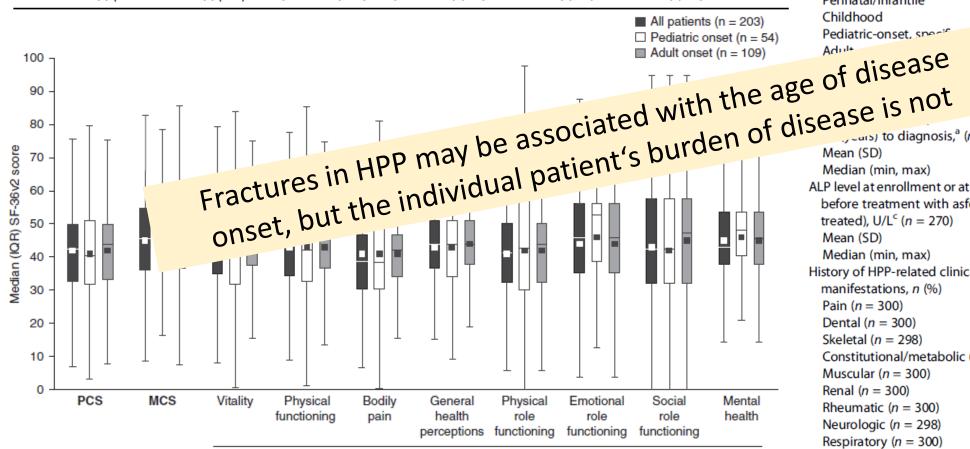
Gl issues: Diarrhea/cons

Diarrhea/constipation Meteorism Intolerances

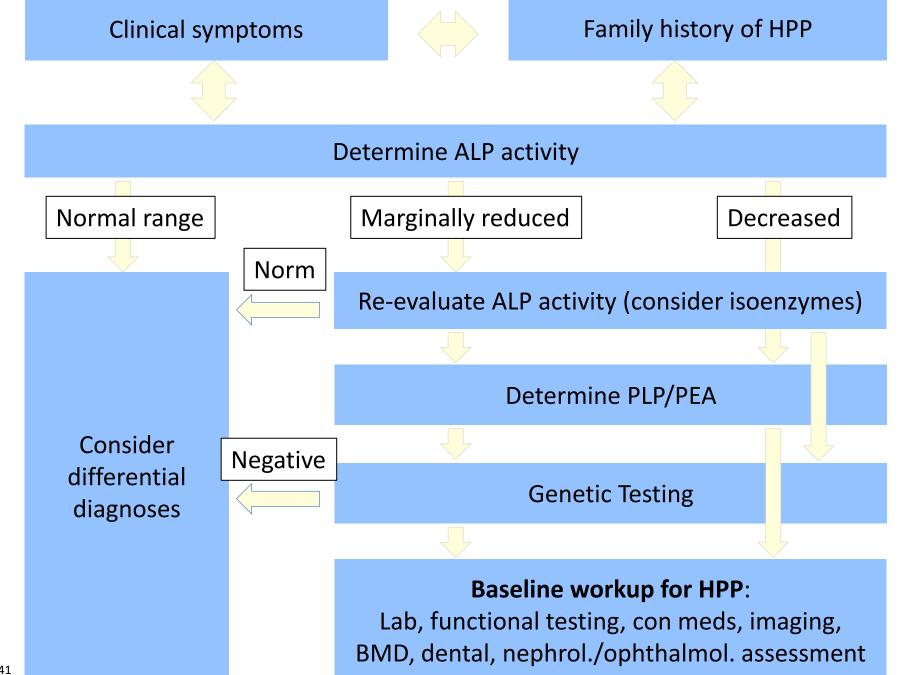
Bone:

Pseudofractures Insufficiency fractures Bone marrow edema Osteomalacia

Joint:


Osteoarthritis Chondrocalcinosis Pseudogout Modified according to: Seefried L, et al. Symptoms and Diagnosis in Adults. In: Hofmann, Girschick, Seefried eds, Diagnosis and Management of Hypophosphatasia, 2nd Edition, Uni-Med, 2022

Burden of Illness in Adults With Hypophosphatasia: Data From the Global Hypophosphatasia Patient Registry


Lothar Seefried,¹ ⁽¹⁾ Kathryn Dahir,² Anna Petryk,³ Wolfgang Högler,⁴ Agnès Linglart,⁵ Gabriel Ángel Martos-Moreno,^{6,7,8} Keiichi Ozono,⁹ Shona Fang,³ Cheryl Rockman-Greenberg,¹⁰ and Priya S Kishnani¹¹

	All patients	Pediatric onset	Adult onset	
Fracture/pseudofracture	<i>n</i> = 240	<i>n</i> = 67	<i>n</i> = 123	<i>p</i> value
Patients with any fracture/pseudofracture, n (%)	149 (62.1)	48 (71.6)	70 (56.9)	0.046
Patients with \geq 3 fractures/pseudofractures, n (%)	52 (21.7)	21 (31.3)	22 (17.9)	0.034
No. of fracture(s)/pseudofracture(s) per patient, median (min, max)	2 (1, 21)	2 (1, 12)	2 (1, 21)	0.421
			All patients (n Pediatric onse	

Participants (N = 304) Characteristic Sex, n (%) Male 78 (25.7) Female 226 (74.3) Age (years) at study enrollment Mean (SD) 47.6 (14.7) Median (min, max) 48.6 (18.8, 79.8) Age (years) at occurrence of first HPP sign/ symptom (n = 205)Mean (SD) 26.0 (21.1) Median (min, max) 20.4 (0.0, 75.3) Age of HPP onset category, n (%) (n = 296) Perinatal/infantile 9 (3.0) Childhood 87 (29.4) Pediatric-onset, specif 2 (0.7) nknown 132 (44.6) 66 (22.3) 40.9 (18.9) 42.8 (0.0, 77.0) , cars) to diagnosis,^a (n = 194) 14.2 (17.3) 5.7 (-1.1^{,b} 62.2) ALP level at enrollment or at last assessment before treatment with asfotase alfa (if 26.5 (12.8) Median (min, max) 24.0 (2.0, 98.0) History of HPP-related clinical manifestations, n (%) Pain (n = 300) 202 (67.3) Dental (n = 300)163 (54.3) 129 (43.3) Skeletal (n = 298) Constitutional/metabolic (n = 298) 99 (33.2) Muscular (n = 300) 86 (28.7) Renal (n = 300)45 (15.0) Rheumatic (n = 300)40 (13.3) Neurologic (n = 298) 34 (11.4) Respiratory (n = 300)12 (4.0)

Domain

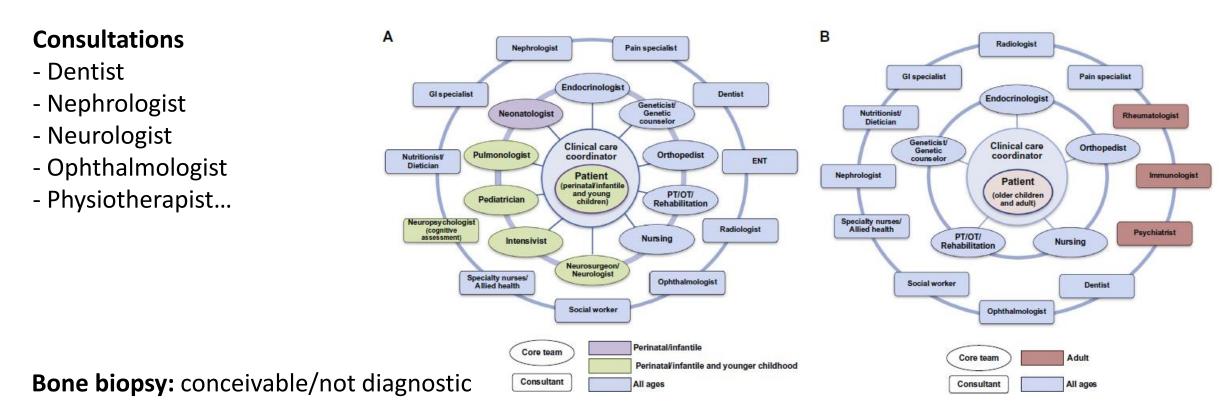
Seefried L, Genest F. Osteologie/Osteology. 2017;26:36-41

Multidisciplinary Management of HPP

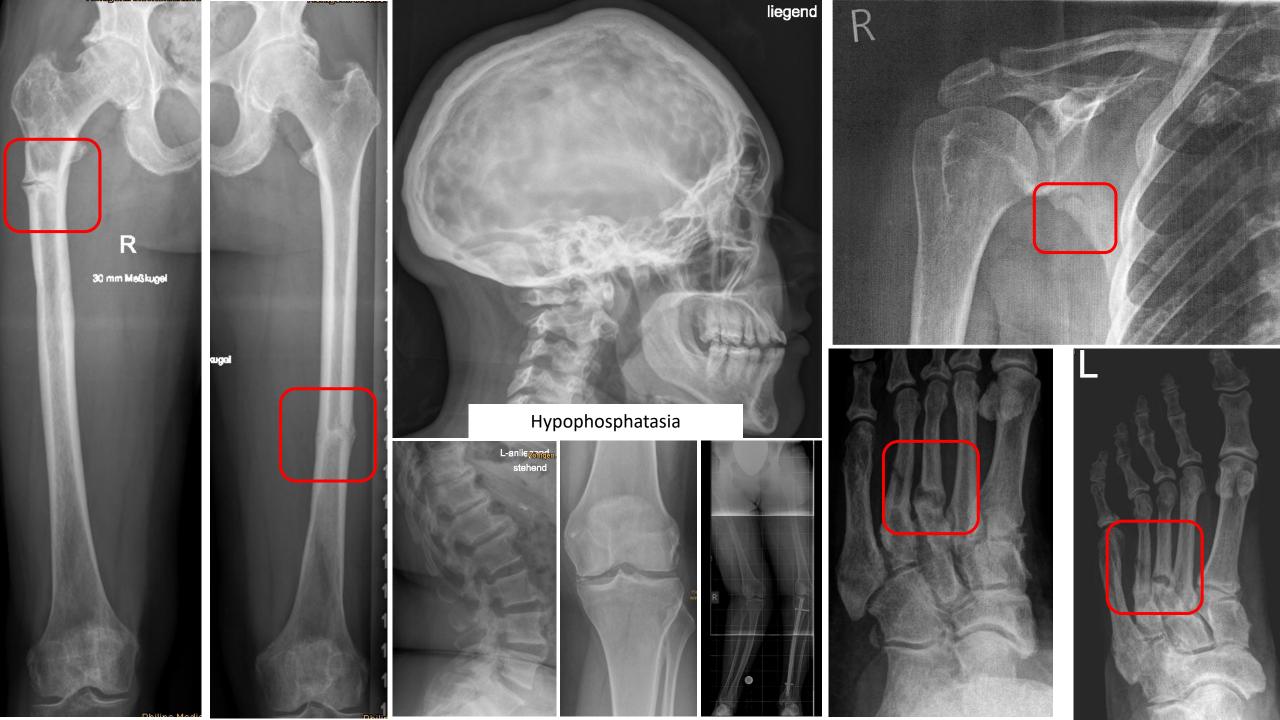
Imaging:

- X-ray: osteomalacia, fractures, pseudofractures
- Ultrasound: calcifications (e.g. nephrocalcinosis)
- MRI: bone marrow lesions

Contents lists available at ScienceDirect


Molecular Genetics and Metabolism

journal homepage: www.elsevier.com/locate/ymgme


Review article

Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa

Priya S. Kishnani^{a,*,1}, Eric T. Rush^{b,1}, Paul Arundel^c, Nick Bishop^d, Kathryn Dahir^e, William Fraser^f, Paul Harmatz^g, Agnès Linglart^h, Craig F. Munns^{i,j}, Mark E. Nunes^k, Howard M. Saal^l, Lothar Seefried^m, Keiichi Ozono^{n,1}

Bone Mineral Density (DXA, qCT): helpful information, not diagnostic

Osteoporosis International https://doi.org/10.1007/s00198-018-4552-3

ORIGINAL ARTICLE

Subtrochanteric and diaphyseal femoral fractures in hypophosphatasia—not atypical at all

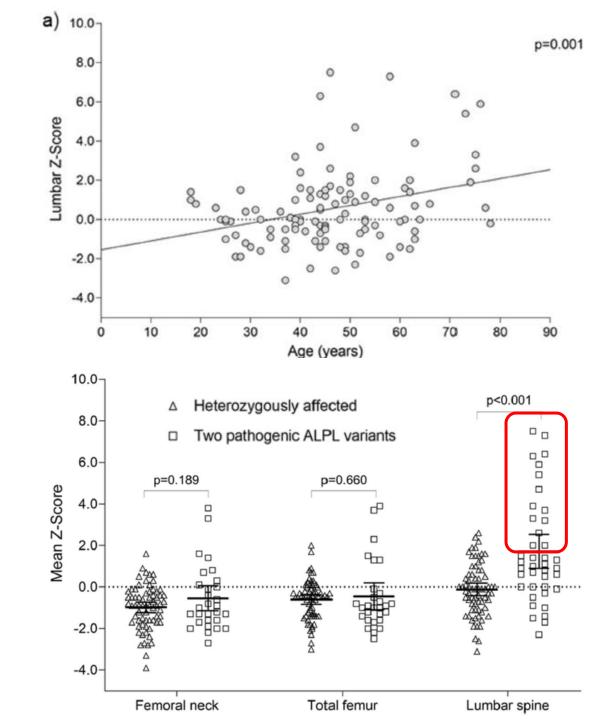
Bisphosphonates: 7/15 Hypovitaminosis D: 10/15

F. Genest¹ · L. Seefried¹

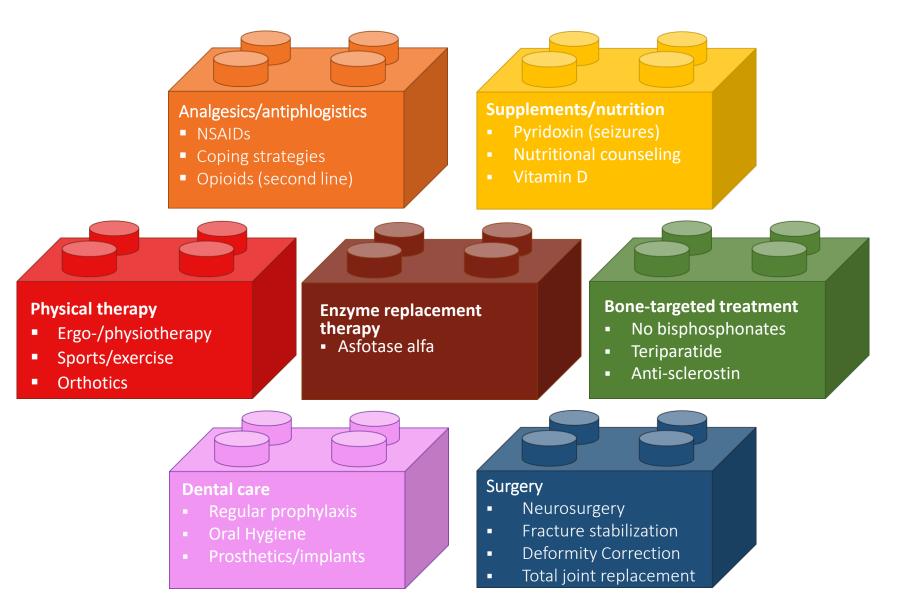
ID no.	Age (year)	Gender	Weight (kg)	Height (cm)	BMI (kg/m ²)	LS T-score	LS Z-score	Fractur	e side	Exon	cDNA	Protein	Exon	cDNA	Protein
								Right	Left		(
01	44	Female	57	160	22.3	+ 3.3	+ 3.7	D	D	6	c.530C > T	p.Ala177Val	6	c.530C > T	p.Ala177Val
02	54	Female	85	154	35.8	+ 0.2	+ 1.2	D	D	6	c.526G > A	p.Ala176Thr	7	c.661G > T	p.Gly221Cys
03	55	Female	82	166	29.8	+ 0.9	+ 2.0	S	D	6	c.571G>A	p.Glu191Lys	10	c.1001G>A	p.Gly334Asp
04	71	Female	69	158	27.6	n.a.	n.a.	S	S	6	c.526G > A	p.Ala176Thr	6	c.535G>A	p.Ala179Thr
05	62	Female	68	160	26.6	- 0.2	+ 1.4	S	S	6	c.571G>A	p.Glu191Lys	12	c.1354G > A	p.Glu452Lys
06	39	Male	64	160	25.0	- 0.6	- 0.5	S	-	4	c.211C>A	p.Arg71Ser	6	c.571G>A	p.Glu191Lys
07	46	Female	115	157	46.7	+ 7.0	+ 7.5	S	D	5	c.379A > G	p.Thr127Ala	6	c.526G > A	p.Ala176Thr
08	51	Female	48	134	26.7	+ 3.8	+ 4.7	D	D	5	c.382G > A	p.Val128Met	11	c.1276G > A	p.Gly426Ser
09	45	Female	51	155	21.2	+ 1.0	+ 1.5	S	-	10	c.1009G>A	p.Asp337Asn	12	c.1363G > A	p.Gly455Ser
10	76	Female	53	152	22.9	+ 3.5	+ 5.9	S	D	6	c.500C > T	p.Thr167Met	6	c.571G>A	p.Glu191Lys
11	55	Male	78	175	25.5	- 0.8	- 0.3	-	D	6	c.571G>A	p.Glu191Lys	10	c.1001G > A	p.Gly334Asp
12	73	Female	63	146	29.6	+ 3.1	+ 5.4	-	S	6	c.571G>A	p.Glu191Lys	10	c.1001G > A	p.Gly334Asp
13	56	Male	83	168	29.4	+ 0.5	+ 1.1	D	-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	43	Female	65	160	25.4	+ 1.3	+ 1.6	S	S	3	c.119C>T	p.Ala40Val	7	c.746G > T	p.Gly249Val
15	50	Female	80	160	29.7	- 0.6	0.0	D	D	6	c.571G>A	p.Glu191Lys	12	c.1354G > A	p.Glu452Lys
Mean	54.7		70.7	157.9	28.3	+ 1.6	+ 2.5								
للمنام ا	Ostassas	- lat 201	8.29.1815-2	-) \								

Table 1 Individual patient characteristics including BMD, fracture types, and mutational analysis. D diaphyseal, S subtrochanteric, n.a. not available

Bone mineral density and fracture risk in adult patients with hypophosphatasia


F. Genest¹ • L. Claußen¹ • D. Rak¹ • L. Seefried¹

Mean (SD)	HPP-related fractures $(n = 22/20\%)$	Other patients $(n = 88/80\%)$	<u>p</u> value*
Anthropometrics			J
Age (year)	52.73 (14.0)	44.57 (13.4)	0.013*
Height (cm)	167.18 (10.6)	167.36 (9.7)	0.939
Weight (kg)	77.05 (16.2)	71.93 (17.0)	0.205
BMI (kg/m ²)	27.37 (4.0)	25.63 (5.6)	0.177
Lab values (normal range)			
ALP (f:42-98/m: 53-128 U/l)	16.68 (11.1)	26.32 (11.0)	< 0.001*
Phosphate (0.6-1.8 mmol/l)	1.58 (0.1)	1.30 (0.2)	< 0.001*
PLP (5-30 ng/ml)	462.78 (483.2)	75.33 (104.4)	0.001*
uPEA (2.3-11.3 mmol/mol Krea)	59.36 (51.9)	16.10 (17.3)	0.001*
NTX (12.9-22.7 nM BCE/l)	15.55 (13.4)	12.96 (4.9)	0.040*
Vitamin D (20-40 ng/ml)	28.27 (11.6)	24.82 (13.8)	0.301
BMD			
Lumbar spine T-Score	+1.33(2.1)	- 0.44 (1.7)	< 0.001*
Lumbar spine Z-Score	+ 2.32 (2.4)	+0.11(1.7)	< 0.001*
Total femur T-Score	- 1.36 (1.1)	- 1.03 (1.2)	0.368
Total femur Z-Score	- 0.77 (1.4)	- 0.53 (1.2)	0.527
Femoral neck T-Score	- 1.71 (1.0)	- 1.74 (1.3)	0.943
Femoral neck Z-Score	- 0.72 (1.2)	- 0.87 (1.3)	0.698


Check for updates

*Significant differences between patients with and without HPP-related fractures

Adapted from: Genest F, et al. Osteoporos Int. 2021;32:377-385

Modules of HPP Treatment

Hypophosphatasia

- ✓ Multisystemic disorder due to deficient ALP activity:
 - Rickets/pseudofractures (severe forms)
 - Extraskeletal manifestations: generalized pain, muscle weakness, periodontal disease, neuropsychiatric issues, GI symptoms
- ✓ Diagnostic approach:
 - Low serum-ALP activity
 - Elevated substrates: PLP/Vit B6, (urinary) PEA, PPi
 - Genetic confirmation recommended
- ✓ Multidisciplinary treatment:
 - Enzyme replacement therapy
 - Analgesics (NSAIDs)
 - Physical therapy
 - Surgery
 - Dental care

COR2ED Bodenackerstrasse 17 4103 Bottmingen SWITZERLAND

Dr. Froukje Sosef MD

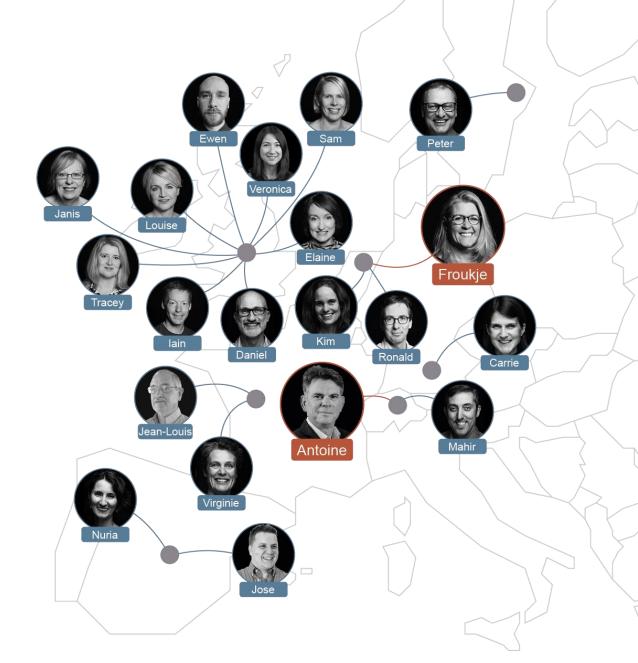
 \bowtie

+31 6 2324 3636

froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

- +41 79 529 42 79
- - antoine.lacombe@cor2ed.com



Follow us on Twitter @COR2EDMedEd

Heading to the heart of Independent Medical Education Since 2012

COR2ED THE HEART OF MEDICAL EDUCATION