COR2ED THE HEART OF MEDICAL EDUCATION

HCC CONNECT VIRTUAL EXPERTS KNOWLEDGE SHARE

TREATMENT OPTIONS FOR HCC PATIENTS WHO ARE NOT ELIGIBLE FOR OR PROGRESSED ON IO: CLINICAL CONSIDERATIONS AND WHEN TO SWITCH

Tuesday 23rd May 2023

TODAY YOU WILL

EXPLORE the outcomes of patients with HCC receiving IO 1st line and determine the right time to switch to 2nd line

KNOW the treatment options for patients with advanced HCC not eligible for IO in 1st line UNDERSTAND the data supporting 2nd line treatment options for patients with advanced HCC, to enable optimal sequencing

AGENDA

TREATMENT OPTIONS FOR HCC PATIENTS WHO ARE NOT ELIGIBLE FOR OR PROGRESSED ON

IO: CLINICAL CONSIDERATIONS AND WHEN TO SWITCH

Торіс	Facilitator	Duration
Welcome and Introductions	COR2ED/ Prof. Michel Ducreux	5 mins
Reviewing the outcomes in HCC with 1 st line IO: when is the right time to switch?	Dr Timon Vandamme	15 mins
Q&A	All	5 mins
What are the treatment options for patients with advanced HCC not eligible for IO in $1^{\rm st}$ line?	Prof. Michel Ducreux	15 mins
Q&A	All	5 mins
Overview of 2 nd line treatment options in advanced HCC: How to achieve optimal sequencing?	Assoc. Prof. Changhoon Yoo	15 mins
Q&A	All	5 mins
Discussion and Q&A	All	15 mins
Future perspectives and summary	Prof. Michel Ducreux	5 mins
Closing remarks	COR2ED	5 mins
		1

DEVELOPED BY HCC CONNECT

This programme is developed by HCC CONNECT, an international group of experts in the field of hepatocellular carcinoma.

Acknowledgement and disclosures

This HCC CONNECT programme is supported through an independent educational grant from Bayer. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

Expert Disclaimers:

- Prof. Ducreux has received financial support/sponsorship from Roche, Servier, Pierre Fabre, Amgen, Daiichi Sankyo, MSD, Bayer, Merck Serono, AstraZeneca for advisory boards and from Roche, MSD, BeiGene, Bayer, Merck Serono, Pierre Fabre, Servier for symposium participation
- Dr Vandamme has received financial support for consultation from Omnigen BV, Roche, Ipsen, Eisai, ElmediX BV, Bayer and institutional grants from Ipsen and Novartis
- Assoc. Prof. Yoo has received financial support/sponsorship from Servier, Bayer, AstraZeneca, MSD, Eisai, Celgene, Bristol Myers Squibb, Debiopharm, Ipsen, Kyowa Kirin, Novartis, Boryung Pharmaceuticals, Merck Serono, Mundipharma, Roche and Janssen

INTRODUCING THE SCIENTIFIC COMMITTEE

Prof. Michel Ducreux Head of GI Oncology Unit, Department of Medical Oncology, Gustave Roussy France

Dr Timon Vandamme Medical Oncologist, Digestive and Neuroendocrine Oncology at the University Hospital Antwerp, Belgium

Assoc. Prof. Changhoon Yoo Medical Oncologist, Department of Oncology, ASAN Medical Center, Seoul, South Korea

KEY CLINICAL TAKEAWAYS

- A substantial part of the advanced HCC patient population is not eligible for IO 1st line, such as:
 - Post-liver transplant patients with recurrent HCC
 - Most patients with an active autoimmune disease
- TKIs, such as lenvatinib and sorafenib, are recommended treatments for these patient groups
- Switching to 2nd line after IO 1st line should be considered in case of toxicity or disease progression
 - Measuring disease progression can be challenging, as there are several methods with different evaluation criteria
 - mRECIST criteria have a powerful ability to discriminate between responders and non-responders
- Multiple 2nd line treatment options have been approved in advanced HCC patients
 - There is lack of solid evidence for optimal 2nd line regimens after progression on new standard 1st line IO-based combination therapy

REVIEWING THE OUTCOMES IN HCC WITH 1ST LINE IMMUNOTHERAPY:

WHEN IS THE RIGHT TIME TO SWITCH?

Dr Timon Vandamme

LIVER CANCER IS THE SIXTH MOST COMMON CANCER WORLDWIDE

IT REPRESENTED 4.7% OF ALL 18.1 MILLION NEW CANCER CASES IN 2018¹

Incidence of the 10 most common cancers in 2018, %¹

HCC, hepatocellular carcinoma

1. Bray F, et al. CA Cancer J Clin. 2018;68:394-424; 2. Llovet JM, et al. Nat Rev Dis Primers. 2016;2:16018

10

WORLDWIDE INCIDENCE OF LIVER CANCER¹ HIGHEST INCIDENCE IN LOW- AND MIDDLE-INCOME COUNTRIES

8.9

10.5

9.0

5.3

5.2

4.2

3.2

3.7

2.9

3.7

5.7

4.3

3.2

2.6

3.0

3.9

3.3

3.3

10

2.0

0 ASR (World) per 100,000

2.6

5.6

7.1

Age standardised (World) incidence rates, liver, by sex

11.6

11.4

10.5

10.1

9.5

8.7

8.6

6.9

6.8

6.8

6.7

6.6

6.2

6.2

10

5.5

4.0

Eastern Asia 26.9 Micronesia 24.2 South-Eastern Asia 21.2 Northern Africa 20.2 World 14.1 Melanesia 13.8 Polynesia Western Africa Southern Europe Northern America Australia and New Zealand Middle Africa Western Europe **Central America** Caribbean Northern Europe Central and Eastern Europe Southern Africa Eastern Africa Western Asia South America South-Central Asia 40 30 20

Figure adapted from WHO, Globocan 2020¹

20

ASR, age standardised rate

1. WHO, Globocan 2020, online: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf accessed April 2023; 2. Bray F, et al. CA Cancer J Clin. 10 2018:68:394-424

Males

Females

30

40

75% of the patients are from **low-**and middle-income countries

Liver cancer is the 5th and 9th most common cancer in men and women, respectively

 Men have a 3-fold higher risk of developing liver cancer than women

CIRRHOSIS IS A PREDISPOSING FACTOR FOR HCC ~85% OF HCC IS CAUSED BY CIRRHOSIS¹

(FL): StatPearls Publishing; 2023 Jan–. PMID: 32644603; 2. Ginès P, et al. Lancet. 2021;398(10308):1359-76; 3. Lan Y, et al. Hepatol Commun. 2023;7(2):e0026.

4. Åberg F, et al. Hepatology. 67(6):2141-9;

POLLING QUESTION

WHAT ARE RECOMMENDED TREATMENT OPTIONS FOR ADVANCED HCC PATIENTS 1ST LINE BY BCLC GUIDELINES?

- A. Sorafenib and lenvatinib
- B. Sorafenib, lenvatinib and durvalumab
- C. Atezolizumab + bevacizumab, or durvalumab + tremelimumab
- D. Atezolizumab + bevacizumab, or durvalumab + tremelimumab, if not feasible sorafenib, lenvatinib and durvalumab ✓
- E. All of the above without specific order
- F. I am not sure

BCLC UPDATED TREATMENT ALGORITHM

MULTIDISCIPLINARY CARE FOR PATIENTS WIT<u>H HEPATOBILIARY CANCER</u>

AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; BCLC, Barcelona Clinic Liver Cancer; BSC, best supportive care; HCC, hepatocellular carcinoma; LT, liver transplantation; MELD, model of end-stage liver disease; PS, performance status; TACE, transarterial chemoembolisation Reig M, et al. J Hepatol. 2022;76:681-93

BCLC UPDATED TREATMENT ALGORITHM MULTIDISCIPLINARY CARE FOR PATIENTS WITH HEPATOBILIARY CANCER

AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; BCLC, Barcelona Clinic Liver Cancer; BSC, best supportive care; HCC, hepatocellular carcinoma; LT, liver transplantation; MELD, model of end-stage liver disease; PS, performance status; TACE, transarterial chemoembolisation Reig M, et al. J Hepatol. 2022;76:681-93

ATEZOLIZUMAB + BEVACIZUMAB COMBINATION ANTI-PD-L1 + VEGFi: IMbrave150

Study design

Primary endpoints: overall survival and progression free survival

ECOG PS, Eastern Cooperative Oncology Group performance status; HCC, hepatocellular carcinoma; NSAID, nonsteroidal anti-inflammatory drug; PD-L1, programmed death-ligand 1; VEGFi, vascular endothelial growth factor inhibitor Finn RS, et al. N Engl J Med. 2020;382(20):1894-905. Finn RS, et al. J Clin Oncol. 2021;39(3_suppl):267-267. Source: https://clinicaltrials.gov/ct2/show/NCT03434379

ATEZOLIZUMAB + BEVACIZUMAB COMBINATION

MEDIAN OS WAS 5.8 MONTHS LONGER THAN SORAFENIB¹

Updated analysis 12 months after the primary analysis of IMbrave150

*Stratification factors included are geographic region (Asia excluding Japan vs RoW), AFP level (<400ng/mL vs ≥400ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS ‡p value for descriptive purposes only

AFP, alpha fetoprotein; atezo, atezolizumab; bev, bevacizumab; CI, confidence interval; EHS, extrahepatic spread; HR, hazard ratio; IxRS, interactive voice/web response system; MVI, microvascular invasion; OS, overall survival; RoW, rest of world

1. Cheng A-L, et al. J Hepatology. 2022;76(4):862-73

DURVALUMAB + TREMELIMUMAB COMBINATION ANTI-PD-L1 + ANTI-CTLA4: HIMALAYA

Study design

- Primary endpoint: OS
- Key secondary endpoints: TTP, PFS, ORR, DCR, DoR, safety and tolerability

BCLC, Barcelona Clinic Liver Cancer; CTLA4, cytotoxic T-lymphocyte associated protein 4; DCR, disease control rate; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HCC, hepatocellular carcinoma; LRT, local regional treatment; ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; TTP, time to progression Source: https://clinicaltrials.gov/ct2/show/NCT03298451

17

DURVALUMAB + TREMELIMUMAB COMBINATION PRIMARY ENDPOINT: SIGNIFICANT BENEFIT IN OVERALL SURVIVAL VS SORAFENIB

Data cut-off: August 27, 2021. Median duration of follow-up was 33.18 (95% CI, 31.7-34.5) months for T300+D and 32.23 (95% CI, 30.4-33.7) months for sorafenib.

CI, confidence interval; HR, hazard ratio; OS, overall survival; Q4W, every 4 weeks; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W 1Abou-Alfa GK, et al. NEJM Evid. 2022;1.8

TIME TO SWITCH TO 2ND LINE THERAPY & RE-CHALLENGING

IMMUNE-RELATED ADVERSE EVENTS ASSOCIATED WITH IMMUNE CHECKPOINT BLOCKADE 10 QUESTIONS RELEVANT TO THE MANAGEMENT OF IMMUNE RELATED ADVERSE EVENTS¹

Figure adapted from Postow et al. 2018¹

- 1. Why do they occur?
- 2. How are they generally treated?
- 3. When do they occur?
- 4. Why do they occur in some patients and not others?
- 5. Are they associated with the efficacy of immune checkpoint blockade?
- 6. Does immunosuppression to treat such adverse events reduce the antitumor efficacy of treatment?
- 7. Are there unintended effects of immunosuppression to treat adverse events?
- 8. Is it safe to restart treatment after a major adverse event?
- 9. Is it necessary to restart treatment after resolution of an adverse event?
- 10. Is it safe to treat patients at potentially increased risk for such adverse events?

IMMUNE-RELATED ADVERSE EVENTS AFFECTED ORGANS AND MANIFESTATIONS

1. Esfahani KH, et al. CMAJ. 2019;191:E40-E46; 2. Haanen JBAG, et al. Ann Oncol. 2017;28:iv119-iv142

ATEZOLIZUMAB + BEVACIZUMAB (IMbrave150): VARICES AND BLEEDING RISK

rhosis and hepatocellular carcinoma. In this trial, patients had to be evaluated for the presence of varices before enrollment, and varices of any size were assessed and treated as needed according to local standards of care. Overall, the inci-

All-causality adverse events of special interest by medical concept	Atezolizumab plus bevacizumab (N=329)		Sorafenib (N=156)	
	All grade	Grade 3 or 4	All grade	Grade 3 or 4
Bevacizumab related, n(%)				
Patients with at least one event	190 (57.8)	76 (23.1)	76 (48.7)	29 (18.6)
Hypertension	102 (31.0)	50 (15.2)	40 (25.6)	19 (12.2)
Bleeding/hemorrhage	83 (25.2)	21 (6.4)	27 (17.3)	9 (5.8)
Proteinuria	70 (21.3)	10 (3.0)	13 (8.3)	1 (0.6)
Thromboembolic event-venous	10 (3.0)	5 (1.5)	5 (3.2)	2 (1.3)
Thromboembolic event-arterial	9 (2.7)	4 (1.2)	2 (1.3)	1 (0.6)
Congestive heart failure	1 (0.3)	0	2 (1.3)	0

Finn R, et al. N Engl J Med. 2020;382(20):1894-905 and supplement;

POLLING QUESTION

WHAT IS THE MOST COMMON IMMUNE RELATED ADVERSE EVENT IN HCC PATIENTS?

- A. Diarrhoea and colitis \bigtriangledown
- B. Infusion-related reactions
- C. Hepatic toxicity
- D. Other

GASTRO INTESTINAL AND HEPATIC IMMUNE-RELATED ADVERSE EVENTS STEROIDS CAN BE USED FOR MOST IMMUNE-RELATED ADVERSE EVENTS

Diarrhoea, %* Colitis, %* Hepatic, %* DRUG 34.0 (7.2) 11.6 (6.8) 14.1 (5.5) **I**pilimumab 12.0 (1.0) Nivolumab 1.0 (0.4) 7.1 (1.5) 10.7 (0.6) Pembrolizumab 1.9 (1.1) 1.0(0.6)IPI + NIVO - High IPI 45.0 (9.0) 13.0 (8.0) 33.0 (20.0) Low IPI 1.0 (0.5) 3.5 (3.0) 21.7 (2.8) 8.5 (0) 4.2 (1.6) Avelumab Atezolizumab 15.4 (0.7) 0.3(0)0.3 (0.3) Durvalumab** 0.7 (0.2) 0.4 (0) 0.7(0.7)

Different drugs and regimens¹

*Any-grade adverse events (grade ≥3 adverse events)

**percentages reported for durvalumab probably do not reflect the true rate All data have been averaged Use of steroids for immune related adverse events in advanced HCC patients in randomised controlled trials

DRUG	Trial	% use of steroids
Nivolumab	Checkmate459	11
Atezolizumab	IMbrave150	12
Durvalumab	HIMALAYA	9.5
STRIDE	HIMALAYA	20
Pembrolizumab/ Ienvatinib	LEAP-002	9.6

HCC, hepatocellular carcinoma; IPI, ipilimumab; NIVO, nivolumab; STRIDE, Single Tremelimumab Regular Interval Durvalumab 1. Martins F, et al. Nat Rev Clin Oncol. 2019;16(9):563-80

ATEZOLIZUMAB + BEVACIZUMAB COMBINATION SUMMARY OF ADVERSE EVENTS >10% FREQUENCY OF AEs IN EITHER ARM AND >5% DIFFERENCE BETWEEN ARMS

AE, adverse event; ALT, alanine aminotransferase; PPE, palmar-plantar erythrodysaesthesia Finn RS, et al. N Engl J Med. 2020;382(20):1894-905

RE-CHALLENGING WITH IMMUNE CHECKPOINT INHIBITOR AFTER TOXICITY

ICI-INDUCED ENTERO-COLITIS¹

Grade 2-4 response to CSs:

- Initiate 4-8-weekly CSs tapering programme
- Upon remission, discuss resuming ICI therapy, weighing oncological benefit against risk of GI irAE recurrence
- In the case of relapse, consider infliximab or vedolizumab as below

Grade 2-4 refractory to CSs:

- Infliximab 5 mg/kg IV in the more severe forms or vedolizumab 300 mg in the more moderate forms and rapid CS tapering
- If no response, consider switching to the other biologic, higher-dose infliximab, faecal microbiota transplantation, ustekinumab, tofacitinib, extracorporeal photopheresis, colectomy and repeat testing for infections

IMMUNE RELATED HEPATOTOXICITY²

ICI-related toxicity: Management of hepatitis

Steroid wean:

- Grade 2: Once grade 1, wean over 2 weeks; re-escalate if worsening; treatment may be resumed once prednisolone ≤10 mg
- Grade 3 or 4: Once improved to grade 2, can change to oral prednisolone and wean over 4 weeks; for grade 3, re-challenge only at consultant discretion

Worsening despite steroids:

- If on oral change to IV (methyl)prednisolone
- If on IV add MMF 500-1000 mg bid
- If worse on MMF, consider addition of tacrolimus
- A case report has described the use of anti-thymocyte globulin in steroid + MMF-refractory fulminant hepatitis

CS, corticosteroid; GI, gastrointestinal; ICI, immune checkpoint inhibitor; irAE, immune related adverse event; IV, intravenous; MMF, mycophenolate mofetil 1. Haanen J, et al. Ann Oncol. 2022;33(12)1217-38; 2. Haanen JBAG., et al. Ann Oncol. 2017;28, iv119-iv142.

PROGRESSION TIME TO SWITCH TO 2ND LINE THERAPY

POLLING QUESTION HOW WOULD YOU MEASURE PROGRESSION IN HCC PATIENTS?

- A. Choi
- B. EASL
- C. RECIST
- D. mrecist 🖂
- E. I am not sure

EASL, European Association for the Study of the Liver (clinical practice guidelines); mRECIST, modified RECIST; RECIST, Response Evaluation Criteria in Solid Tumors²⁸

HOW TO MEASURE PROGRESSION IN HCC?

Before start treatment

After immunotherapy

Figure adapted from Zhou et al. 2021¹

HCC, hepatocellular carcinoma Zhou, et al. Front Oncol. 2021;11:764189

HOW TO MEASURE PROGRESSION IN HCC? mRECIST CRITERIA HAVE A POWERFUL ABILITY TO DISCRIMINATE BETWEEN RESPONDERS AND NON RESPONDERS

Baseline and post-treatment evaluation

1 = tumour light/dark gray = viable tumour/necrosis 2 = inferior vena cava Proportions of patients with OR, SD and PD using alternative response criteria

Figures adapted from Ronot et al. 2014

EASL, European Association for the Study of the Liver; HCC, hepatocellular carcinoma; mRECIST, modified RECIST; OR, objective response; PD, progressive disease; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease Ronot M, et al. Oncologist. 2014;19:394-402

CONCLUSION REVIEWING THE OUTCOMES IN HCC WITH 1ST LINE IO: WHEN IS THE RIGHT TIME TO SWITCH?

- HCC is an increasing global health care challenge
- IO is an effective standard-of-care 1st line treatment in advanced HCC with rare but potentially dangerous side-effects
- Switching to 2nd line after IO 1st line should be considered in case of toxicity or disease progression
- Measuring disease-progression in HCC can be challenging as there are several methods with different evaluation criteria
 - mRECIST criteria have a powerful ability to discriminate between responders and non-responders

DISCUSSION

PATIENTS WITH ADVANCED HCC NOT ELIGIBLE FOR IO IN 1ST LINE

THE ROLE OF TKIS AS THE PRIMARY TREATMENT OPTION

Prof. Michel Ducreux

HCC, hepatocellular carcinoma; IO, immunotherapy; TKI, tyrosine kinase inhibitor

POLLING QUESTION WHICH PATIENT GROUP IS ELIGIBLE FOR IO 1ST LINE?

- A. Patients with active or uncontrolled auto-immune disease
- B. HCC recurrent patients after liver transplantation
- **C.** Patients with a significant bleeding history

*These patients are now eligible for durvalumab + tremelimumab

- A. None of those
- B. All of those
- C. I am not sure

POLLING QUESTION HOW WOULD YOU TREAT A POST-LIVER TRANSPLANT PATIENT WITH ADVANCED RECURRENT HCC IN 1ST LINE?

- A. With single agent immunotherapy
- B. With immunotherapy based combination treatment, such as durvalumab + tremelimumab or atezolizumab + bevacizumab
- C. With TKIs, such as lenvatinib or sorafenib
- D. With chemotherapy
- E. I am not sure

THE HCC SYSTEMIC TREATMENT LANDSCAPE HAS RAPIDLY EVOLVED SINCE 2017

First-line therapies

Second-line therapies

Negative phase 3 trials

AFP, alpha-fetoprotein; EMA, European Medicines Agency; FDA, Food and Drug Administration; HCC, hepatocellular carcinoma; NMPA, National Medical Products Administration; OS, overall survival; PFS, progression-free survival; uHCC, unresectable HCC

1. Nexaar (sorafenib) Full Prescribing Information. Bayer HealthCare Pharmaceuticals, Whippany, NJ. 2020 (accessed May 2020); 2. FDA regorafenib in HCC press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 3. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 4. FDA press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm6717185.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources.information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources.information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources.information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources.information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (accessed May 2020); 5. Dea press release. Available from: https://www.fda.gov/drugs/resources.information-approved-drugs/InformationOnDrugs/ApprovedDrugs/ucm629512.htm (a
ESMO HCC GUIDELINES E-UPDATE (MARCH 2021) **OPTIONAL SYSTEMIC TREATMENT 1ST LINE: LENVATINIB AND SORAFENIB**

validated by the ESMO Guidelines Committee

^c Non-inferiority to sorafenib established; no evaluable benefit

^d Regorafenib is not recommended in TKI-naive patients

^e Ramucirumab is only recommended in patients with an AFP level \geq 400 ng/mL

AFP, alpha fetoprotein; BCLC, Barcelona Clinic Liver Cancer; BSC, best supportive care; EMA, European Medicines Agency; ESMO. European Society for Medical Oncology; HCC, hepatocellular carcinoma; LTx, liver transplantation; MCBS, magnitude of clinical benefit scale; SBRT, stereotactic body radiation therapy; SIRT, selective internal radiation therapy; TACE, transarterial chemoembolisation; TKI, tyrosine kinase inhibitor

1. Vogel A. et al. Ann Oncol. 32(6):801-5

1ST-LINE TREATMENT OPTIONS FOR PATIENTS NOT ELIGIBLE FOR IO TKIS SORAFENIB AND LENVATINIB

*REFLECT is a randomised phase 3 non-inferiority trial

CI, confidence interval; HR, hazard ratio; IO, immunotherapy; OS, overall survival; TKI, tyrosine kinase inhibitor

1. Llovet JM, et al. N Engl J Med. 2008;359(4):378-90; 2. Kudo M, et al. Lancet. 2018;391(10126):1163-73

ESMO HCC GUIDELINES E-UPDATE (MARCH 2021) OPTIONAL SYSTEMIC TREATMENT 1ST LINE: LENVATINIB AND SORAFENIB

- ^d Regorafenib is not recommended in TKI-naive patients
- ^e Ramucirumab is only recommended in patients with an AFP level ≥ 400 ng/mL

AFP, alpha fetoprotein; BCLC, Barcelona Clinic Liver Cancer; BSC, best supportive care; EMA, European Medicines Agency; ESMO. European Society for Medical Oncology; HCC, hepatocellular carcinoma; LTx, liver transplantation; MCBS, magnitude of clinical benefit scale; SBRT, stereotactic body radiation therapy; SIRT, selective internal radiation therapy; TACE, transarterial chemoembolisation; TKI, tyrosine kinase inhibitor

1. Vogel A, et al. Ann Oncol. 32(6):801-5

PATIENTS WITH LIVER TRANSPLANTATION

PATIENTS WITH LIVER TRANSPLANTATION LIVER TRANSPLANTATION CAN BE CURATIVE, BUT HCC RECURS IN 10-16% OF PATIENTS¹

- Retrospective study with 121 HCC recurrent patients²
 - Median time to recurrence: 14 months
 - 41% early recurrence (<1 year)
 - 31% treated with curative intent
 - 42% palliative treatment
 - 26% supportive care only

Figure adapted from Saposochin et al. 2015²

1. Rimassa L, et al. J Hepatol. 2021:74;P931-43; 2. Sapisochin G, et al. Ann Surg Oncol. 2015;22:2286-94

PATIENTS WITH LIVER TRANSPLANTATION TYPE OF RECURRENCE (N=121)

PATIENTS WITH LIVER TRANSPLANTATION ROLE OF IMMUNO-SUPPRESSION IN THE INCIDENCE OF RECURRENCE

- 219 patients, Milan criteria
 - HCC recurrence rates: 17.6% at 5 years
 - Not influenced by use of corticosteroids and antimetabolites
 - Similar with cyclosporine and tacrolimus
 - But: higher exposure to calcineurin inhibitors within the first month after liver transplantation associated with higher risk of recurrence: 27.7% versus 14.7 at 5 years

HCC recurrence % (No. at risk)	1 year	3 years	5 years
High CNI exposure (n=36)	5.7 (32)	14.7 (27)	22 (21)
Reduced CNI exposure (n=106)	1 (99)	5.5 (79)	7 (48)

Figure adapted from Rodiguez-Peralvarez et al. 2013

Little information is available on the safety of IO therapy in patients with liver or other solid organ transplants since they were excluded from trials

CNI, calcineurin inhibitor; HCC, hepatocelular carcinoma; IO, immunotherapy Rodriguez-Peralvarez M, et al. J Hepatol. 2013;59:1193-9

Within MILAN criteria

PATIENTS WITH LIVER TRANSPLANTATION HIGH REJECTION RISK WITH IMMUNOTHERAPY

Prior organ transplantation	Checkpoint inhibitor	Allograft rejection, no./reported cases (%)	Median time to rejection, days (range)
Hepatic	Ipilimumab	1/3 (33)	13
	Nivolumab	2/4 (50)	12.5 (7-18)
	Pembrolizumab	1/3 (33)	7
	Ipilimumab followed by pembrolizumab	0/1 (0)	
	All	4/11 (36)	10 (7-18)

Table adapted from Abdel-Wahab et al. 2019

PATIENTS WITH LIVER TRANSPLANTATION SORAFENIB AND LENVATINIB FOR RECURRENT HCC PATIENTS

PATIENTS WITH LIVER TRANSPLANTATION SORAFENIB PROVIDES CLINICAL BENEFIT TO PATIENTS WITH RECURRENT HCC

- Sorafenib has demonstrated improvements in OS vs BSC in the post-transplant setting¹⁻³
 - Patients with liver transplantation are typically excluded from RCTs⁴
- Patient outcomes with liver transplantation may be better than without due to preserved liver function

Figure adapted from Lee et al. ⁵

BSC, best supportive care; HCC, hepatocellular carcinoma; LT, liver transplantation; Med., median; OS, overall survival; RCT, randomised controlled trial 1. Kang SH, et al. J Korean Med Sci. 2018;33:e283; 2. Sposito C, et al. J Hepatol. 2013;59:59-66; 3. de'Angelis N, et al. Prog Transplant. 2016;26:348-355; 4. Masi G, et al. Poster P-024; presented at EASL Digital Liver Cancer Summit 2021. Abstract P-024; 5. Lee SK, et al. Hepatol Int. 2021;15:137-45

THE SORAFENIB-REGORAFENIB SEQUENCE EXTENDING SURVIVAL IN HCC RECURRENCE AFTER LIVER TRANSPLANTATION

BSC, best supportive care; CI, confidence interval; HCC, hepatocellular carcinoma; OS, overall survival; REGO, regorafenib; lavarone M, et al. Liver Transpl. 2021;27(12):1767-78

PATIENTS WITH LIVER TRANSPLANTATION META-ANALYSIS SHOWS 1-YEAR SURVIVAL RATE OF 63% FOR PATIENTS TAKING SORAFENIB FOR HCC RECURRENCE POST-LIVER TRANSPLANTATION

1-year survival rates of patients treated with sorafenib for HCC recurrence after LT in eight studies using a random-effects model (n=113)

CI, confidence interval; HCC, hepatocellular carcinoma; LT, liver transplantation Mancuso A, et al. Dig and Liv Dis. 2015;47:324-30

PATIENTS WITH LIVER TRANSPLANTATION FEW DATA ON LENVATINIB IN PATIENTS WITH RECURRENT HCC

- 45 patients
 - 43 Child-Pugh A
 - 78% ALBI 1
 - 22% ALBI 2
- ORR: 20%
- Median PFS: 7.6 months
- Median OS: 14.5 months

According to ALBI score

ALBI, Albumin-Bilirubin; CI, confidence interval; HCC, hepatocellular carcinoma; PFS, progression free survival; ORR, objective response rate; OS, overall survival Bang K, et al. Cancer Med. 2023;12(3):2572-9

BEFORE LIVER TRANSPLANTATION

- The role of neoadjuvant treatment including immunotherapy is less clear
- Immunotherapy pre liver transplantation may **facilitate down staging** of unresectable HCC bridging to liver transplantation eligibility
- However, higher risk of donor graft rejection
- Limited data in the literature¹
 - 10 patients
 - 80% objective response rate
 - 100% disease control rate
 - Biopsy-proven acute rejection incidence: 30%
 - 2 patients died from rejection

PATIENTS WITH AUTO-IMMUNE DISEASE (AID)

PATIENTS WITH AUTO-IMMUNE DISEASE HAVE ROUTINELY BEEN EXCLUDED FROM CLINICAL TRIALS

- Patients with HCC may suffer from:
 - Hepatobiliary auto-immune diseases
 - Primary biliary cholangitis
 - Primary sclerosing cholangitis
 - Auto-immune hepatitis
 - Other auto-immune diseases
 - Rheumatoid arthritis
 - Type 1 diabetes
 - Psoriasis
 - Hypothyroidism
- Data on the safety of immunotherapy in individuals with pre-existing AID are limited and restricted to case reports and retrospective cohorts
 - 45 85 patients
 - Studies including a large variety of AIDs, which makes impossible to draw firm conclusions

PATIENTS WITH AUTO-IMMUNE DISEASE IMMUNOTHERAPY CAN LEAD TO ADVERSE EFFECTS

In a multicenter retrospective cohort study¹ of patients with pre-existing autoimmune disease receiving ICI as cancer treatment (n=112) over a median follow up of 8 months:

- 71% of patients had a flare of a pre-existing autoimmune disease and/or another immunerelated adverse effects related to ICI treatment
- 47% of patients had flares of pre-existing autoimmune disease
 - 30% had severe flares
- 42% of patients had other immune-related adverse effects
 - 40% had severe effects

AIDs with a potential high mortality on reactivation, such as neurological disorders or hepatobiliary disorders are underrepresented in such studies

PATIENTS WITH AUTO-IMMUNE DISEASE CONTRAINDICATION FOR IMMUNOTHERAPY

Recent recommendations suggest:

"Immunotherapy should be avoided when reactivation of autoimmune disease may be life-threatening, in those with neurological or neuromuscular disease or in those on high doses of immunosuppression"

LENVATINIB VS ATEZOLIZUMAB + BEVACIZUMAB IN REAL LIFE NO MEANINGFUL DIFFERENCE IN OVERALL SURVIVAL

- 1341 patients treated with lenvatinib
- 864 with atezolizumab + bevacizumab

atezo, atezolizumab; bev, bevacizumab

Casadei-Gardini A, et al. Eur J Cancer. 2023;180:9-20

PATIENTS WITH A SIGNIFICANT BLEEDING HISTORY

POLLING QUESTION WHAT WOULD BE THE PREFERRED 1ST LINE TREATMENT FOR PATIENTS WITH A SIGNIFICANT BLEEDING HISTORY?

- A. Durvalumab
- B. Lenvatinib
- C. Sorafenib
- D. Durvalumab + tremelimumab 🖂
- E. Atezolizumab + bevacizumab
- F. I am not sure

PATIENTS WITH A SIGNIFICANT BLEEDING HISTORY NO LONGER A CONCERN

When patients are not good candidates for **atezolizumab + bevacizumab**¹

When to consider patients for treatment with durvalumab + tremelimumab²

Data cut-off: August 27, 2021. Median duration of follow-up was 33.18 (95% CI, 31.74-34.53) months for T300+D and 32.23 (95% CI, 30.42-33.71) months for sorafenib.

*Stratification factors included are geographic region (Asia excluding Japan vs RoW), AFP level (<400ng/mL vs ≥400ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS; [‡]p value for descriptive purposes only

AFP, alpha fetoprotein; CI, confidence interval; EHS, extrahepatic spread; HR, hazard ratio; IxRS, interactive voice/web response system; MVI, microvascular invasion; OS, overall survival; Q4W, every 4 weeks; RoW, rest of world; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W

1. Cheng AL, et al. J Hepatol. 2022;76(4):862-73 ; 2. Abou-Alfa GK, et al. NEJM Evid. 2022;1.8

ETIOLOGY OF THE LIVER DISEASE

THE IMPACT OF UNDERLYING LIVER DISEASE ON TREATMENT EFFICACY VIRAL VS. NON-VIRAL ETIOLOGY

The atezolizumab + bevacizumab combination seems to be less effective in non-viral HCC

atezo, atezolizumab; bev, bevacizumab; CI, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; mo, months; mOS, median OS; mPFS, median PFS; OS, overall survival; PFS, progression-free survival

Cheng AL, et al. J Hepatol. 2022;76(4):862-73

DISCUSSION

OVERVIEW OF 2ND LINE TREATMENT OPTIONS IN ADVANCED HCC

HOW TO ACHIEVE OPTIMAL SEQUENCING?

Assoc. Prof. Changhoon Yoo

POLLING QUESTION WHAT ARE RECOMMENDED 2ND LINE OPTIONS POST SORAFENIB ACCORDING TO THE BCLC GUIDELINE?

- A. Atezolizumab + bevacizumab
- **B.** Regorafenib, cabozantinib, and ramucirumab
- C. Durvalumab + tremelimumab
- D. Durvalumab
- E. Lenvatinib
- F. I am not sure

POLLING QUESTION HOW WOULD YOU TREAT AN ADVANCED HCC PATIENT WHO PROGRESSED ON IO-BASED COMBINATION TREATMENTS?

A. Clinical trial \checkmark

- B. Sorafenib
- C. Lenvatinib
- D. Regorafenib
- E. Cabozantinib
- F. Atezolizumab + bevacizumab (if not used previously)
- G. Durvalumab + tremelimumab (if not used previously)

THE BCLC GUIDELINE RECOMMENDS CLINICAL TRIALS AFTER PROGRESSION IN DAILY PRACTICE, MOST PHYSICIANS NEED TO CHOOSE ONE OF APPROVED AGENTS

AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; BCLC, Barcelona Clinic Liver Cancer; BSC, best supportive care; HCC, hepatocellular carcinoma; LT, liver transplantation; MELD, model of end-stage liver disease; PS, performance status; TACE, transarterial chemoembolisation Reig M, et al. J Hepatol. 2022;76:681-93

RETROSPECTIVE ANALYSIS OF HCC PATIENTS TREATED WITH IMMUNOTHERAPY POST-IMMUNOTHERAPY TREATMENT WAS ASSOCIATED WITH PROLONGED OS POST-TKI TREATMENT SUGGESTED PRESERVED EFFICACY IN TERMS OF OS

420 patients

From USA, Europe and Asia

Details of subsequent therapies received during survival follow-up following immunotherapy (N=165)

Number of subsequent lines received	N (%)			
1	115 (67.9)			
2	32 (19.4)			
>3	13 (7.9)			
Treatments received				
TKI sorafenib lenvatinib regorafenib cabozantinib ramucirumab	109 (66.1) 49 (44.9) 31 (28.4) 33 (30.3) 13 (11.9) 6 (5.5)			
Radiotherapy	28 (16.9)			
Immunotherapy	21 (12.7)			
Transarterial chemoembolization/Y90	19 (11.5)			
Chemotherapy	9 (5.5)			
Surgery	6 (3.6)			
Radiofrequency/microwave ablation	4 (2.4)			
Other	23 (13.9)			

HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; OS, overall survival; TKI, tyrosine kinase inhibitor; Y90, Yttrium-90 Sharma R, et al. Hepatol Commun. 2022;6(7):1776-1785

PATTERNS OF PROGRESSION AFTER IMMUNOTHERAPY CONTINUATION OF IO AND SWITCHING TO TKIS WERE BOTH ASSOCIATED WITH IMPROVED PPS

The median OS of these 271 patients from the initial diagnosis of HCC was 32.7 months (IQR 17.1–56.8)

- No post-progression anticancer therapy
 - 1.9 months (95% CI: 1.3-2.7)
- ICIs beyond PD only
 - 5.6 months (95% CI: 3.5-9.4)
- Post-PD tyrosine kinase inhibitors (TKIs)
 - 10.4 months (95% CI: 7.7-14.4)
- ICIs beyond PD followed by TKIs
 - 15.3 months (95% CI: 8.5-22.0)
- Other post-PD anticancer therapies
 - 10.8 months (95% CI: 3.7-21.7)

OPTIMAL SEQUENCING AFTER PROGRESSION ON IO

POLLING QUESTION IS THERE ANY OPTIMAL SEQUENCING AFTER PROGRESSING ON IO?

- A. Yes
- B. No
- C. Not yet 🖂
- D. I am not sure

IS THERE ANY OPTIMAL SEQUENCING AFTER PROGRESSION ON IO?

NOT ENOUGH EVIDENCE EITHER FROM PROSPECTIVE OR RETROSPECTIVE STUDIES

SUBSEQUENT MKI AFTER ICI: REGORAFENIB NO SIGNIFICANT DIFFERENCE IN PFS OR OS ACCORDING TO THE TREATMENT LINES, AND PRIOR EXPOSURE TO IMMUNE CHECKPOINT INHIBITORS

The real-life clinical outcomes of regorafenib for patients who progressed on prior systemic therapy including ICIs were consistent with the phase 3 trial results

ICI, immune checkpoint inhibitor; MKI, multi-targeted kinase inhibitor; OS, overall survival; PFS, progression free survival Yoo C, et al. Liver Int. 2020;40(9):2263-71.

SUBSEQUENT MKI AFTER ICI: CABOZANTINIB NO DIFFERENCE IN TERMS OF PFS AND OS WITH CABOZANTINIB ACCORDING TO THE PRIOR EXPOSURE TO IMMUNE CHECKPOINT INHIBITORS

Korean multicenter retrospective study

- Multicenter (n=3) study for 110 patients: 82% of patients received cabozantinib as ≥4th line therapy
- 85% of patients received immune checkpoint inhibitors previously

Limitations of prior data for post-IO treatment: Mostly ICI monotherapy, not atezolizumab + bevacizumab or durvalumab + tremelimumab

ICI, immune checkpoint inhibitor; IO, immunotherapy; MKI, multi-targeted kinase inhibitor; OS, overall survival; PFS, progression free survival Bang YH, et al. Ther Adv Med Oncol. 2022;14:1-12
CLINICAL OUTCOMES WITH TKIS AFTER PROGRESSION ON ATEZOLIZUMAB + BEVACIZUMAB SORAFENIB VS LENVATINIB IN RETROSPECTIVE STUDY

49 pts from Korea, HK and Singapore who received TKI after progression on 1st line atezolizumab + bevacizumab*

atezo, atezolizumab; bev, bevacizumab; HK, Hong Kong; mOS, median OS; mPFS, median PFS; OS, overall survival; PFS, progression free survival; TKI, tyrosine kinase inhibitor Yoo C, et al. Liver Cancer. 2021;10(2):107-114

JAPANESE REAL-WORLD REGISTRY STUDY OF SYSTEMIC TREATMENT OF HCC

DEMONSTRATING THE EFFICACY OF VARIOUS TREATMENT SEQUENCES

Treatment efficacy of 2nd line therapy

1 st line	2 nd line	Ν	RR/DCR (%/%)	Tx duration (days)
Atezolizumab + Bevacizumab	Ongoing	148		
	Sorafenib	8	0/40 (n=5)	25 (11-ND)
	Regorafenib	0		
	Lenvatinib	72	14.9/80.9 (n=47)	87 (64-141)
	Ramucirumab	6	0/100 (n=2)	28 (28-ND)
	Cabozantinib	3	0/50 (n=2)	18 (9-ND)

DCR, disease control rate; HCC, hepatocellular carcinoma; ND, not determined; RR, response rate; Tx, treatment Asaoka Y, J Clin Oncol. 2023. 41(no. 4_suppl):510-510 (presented at ASCO; poster #510)

ANY ROLE OF ICI RECHALLENGE (ANTI-CTLA-4) IN POST-IO SETTING? IPILIMUMAB + NIVOLUMAB OR PEMBROLIZUMAB AFTER PROGRESSION ON PRIMARILY NIVOLUMAB OR PEMBROLIZUMAB MONOTHERAPY*

- 25 patients were included
- Objective response rate of patients with primary resistance to prior ICI: 16.7%

Would there be a potential role of durvalumab + tremelimumab or ipilimumab + nivolumab after progression on atezolizumab + bevacizumab?

Ipilimumab + nivolumab or pembrolizumab can achieve durable antitumor activity and encouraging survival outcomes in HCC patients who had prior treatment with ICIs

Limitation: Small retrospective study

*4% progressed on atezolizumab + bevacizumab

CTLA-4, cytotoxic T-lymphocyte associated protein-4; HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; IO, immunotherapy; OS, overall survival Wong JSL, et al. J Immunother Cancer. 2021;9(2):e001945

IMbrave251: 2nd line atezolizumab + TKI vs TKI alone after progression on atezolizumab + bevacizumab

Efficacy objectives

- Primary: OS
- Secondary: PFS,* ORR,* DoR,* TTP,* TTD in PROs

Safety objective

Percentage of patients with AEs

Exploratory

- Number of patients with anti-drug antibodies to atezolizumab
- Serum concentration of atezolizumab

*INV-assessed per RECIST v1.1

AE, adverse event; AFP, alpha fetoprotein; ALBI, albumin-bilirubin; DoR, duration of response; HBV/HCV, hepatitis B/C virus; HCC, hepatocellular carcinoma; OS, overall survival; PFS, progression free survival; ORR, objective response rate; PRO, patient-reported outcome; TKI, tyrosine kinase inhibitor; TTD, time to deterioration; TTP, time to progression

ClinicalTrials.gov.Identifier: NCT04770896 https://clinicaltrials.gov/ct2/show/NCT04770896 accessed April 2023

CONCLUSION OVERVIEW OF 2ND LINE TREATMENT OPTIONS IN ADVANCED HCC – HOW TO ACHIEVE OPTIMAL SEQUENCING?

- There is lack of solid evidence for optimal second-line regimens after progression on new standard 1st line IO-based combination therapy
- Previously approved drugs as 1st line or subsequent-line therapy may be used for these
 patients, if there are no adequate clinical trials
- Multiple small retrospective studies suggest that the efficacy outcomes of post-IO TKIs are comparable to those in registration studies
 - Multiple prospective studies are ongoing for regorafenib, cabozantinib, and lenvatinib

DISCUSSION

KEY CLINICAL TAKEAWAYS

- A substantial part of the advanced HCC patient population is not eligible for IO 1st line, such as:
 - Post-liver transplant patients with recurrent HCC
 - Most patients with an active autoimmune disease
- **TKIs**, such as lenvatinib and sorafenib, **are recommended treatments** for these patient groups
- Switching to 2nd line after IO 1st line should be considered in case of toxicity or disease progression
 - Measuring disease progression can be challenging, as there are several methods with different evaluation criteria
 - mRECIST criteria have a powerful ability to discriminate between responders and non-responders
- Multiple 2nd line treatment options have been approved in advanced HCC patients
 - There is lack of solid evidence for optimal 2nd line regimens after progression on new standard 1st line IO-based combination therapy

ANY QUESTIONS? PANEL DISCUSSION

FUTURE PERSPECTIVES

- As IO-based combination regimens are globally established as 1st line treatments, there is a need to study optimal sequencing after progression on these regimens
 - Multiple prospective trials and registry studies are ongoing
- Novel methods for response evaluation such as circulating tumoral DNA could facilitate treatment decision-making in the future
- The role of liver transplantation after IO needs further studies

HCC

Connect on

Visit us at

connect

POWERED BY COR2ED

Heading to the heart of Independent Medical Education Since 2012