

DEVELOPED BY BREAST CANCER CONNECT

This programme is developed by BREAST CANCER CONNECT, an international group of experts in the field of breast cancer.

Acknowledgement and disclosures

This BREAST CANCER CONNECT programme is supported through an independent educational grant from Menarini Stemline Oncology. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

Please note: The views expressed within this programme are the personal opinions of the experts. They do not necessarily represent the views of the experts' institutions, or the rest of the BREAST CANCER CONNECT group.

Expert Disclaimers:

• **Prof. Francois-Clement Bidard** discloses financial support/sponsorship from AstraZeneca, Daiichi-Sankyo, Caris, Exact Sciences, General Electrics Healthcare, GSK, Inatherys, Lilly, Merck KGaA, Menarini Silicon Biosystems, Menarini/Stemline, Novartis, Pfizer, Prolynx, Rain Oncology, Roche, SAGA Diagnostics, Seagen, Sanofi

BREAST CANCER CONNECT ANIMATED VIDEO

OPTIMIZING TREATMENT SELECTION AND MAKE APPROPRIATE SEQUENCING DECISIONS FOR PATIENTS WITH ER+/HER2- MBC PREVIOUSLY TREATED WITH CDK4/6 INHIBITORS

Prof. Francois-Clement Bidard
University of Versailles/Paris-Saclay, Paris, France

September 2023

CLINICAL TAKEAWAYS

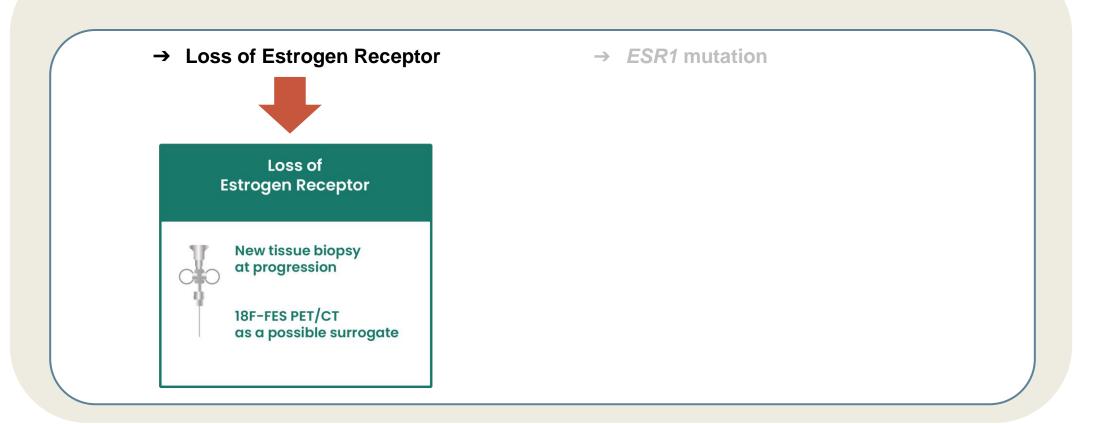
- To optimize treatment selection, molecular characterization should be conducted for each patient, taking into account 'stable' characteristics and 'labile' traits which are often associated with resistance to endocrine therapy
- ESR1 mutation testing should be done with a liquid biopsy platform at the time of progression on an aromatase inhibitor as well as after subsequent lines of progression
- Elacestrant was the 1st oral SERD to be FDA approved (January 2023), with optimal efficacy and manageable safety for patients with ESR1 mutated ER+/HER2- advanced or metastatic breast cancer
- Oral SERDs are being studied as a monotherapy and in combination with targeted therapies (i.e. CDK4/6, PI3K and AKT inhibitors), offering promising prospects for their integration into clinical practice

CLINICAL SCENARIO

PATIENT CASE: DE NOVO METASTATIC BREAST CANCER

MOLECULAR CHARACTERISATION

MOLECULAR CHARACTERISATION: 'STABLE' BC CHARACTERISTICS

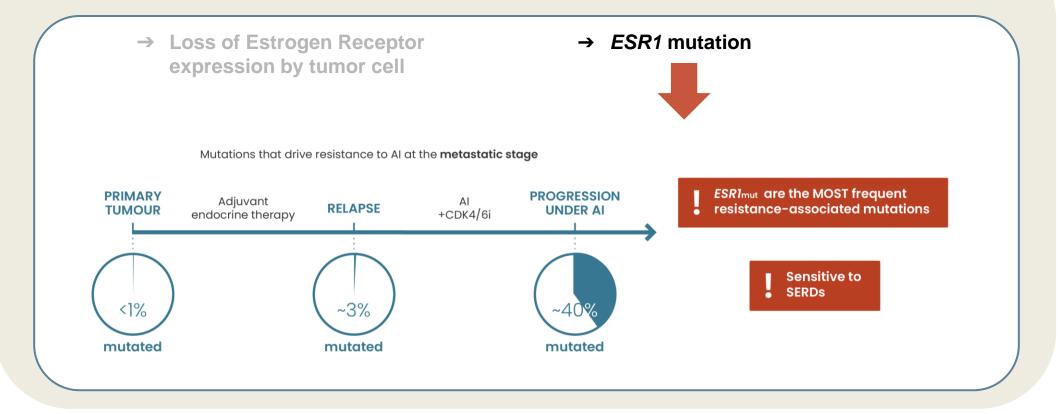

'STABLE' BC CHARACTERISTICS 'LABILE' BC CHARACTERISTICS Currently Currently Currently **NOT targetable** targetable targetable (off label) sBRCA1/2mut Somatic mutation Somatic mutations in in TP53 PIK3CA: gPALB2mut sPIK3CAmut **Germline mutations in** BRCA1/2: gBRCA1/2mut Somatic landscape should be assessed in 1L through Non-exhaustive examples panel-based NGS testing.

BRCA1/2, Germline mutations in Breast Cancer Susceptibility Genes 1 and 2; gBRCA1/2mut, Germline mutations in Breast Cancer Susceptibility Genes 1 and 2; gPALB2mut, Germline mutations in Partner and Localizer of BRCA2; PIK3CA, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (gene); sBRCA1/2mut, Somatic mutations in Breast Cancer Susceptibility Genes 1 and 2; sPIK3CAmut, Somatic mutations in Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (gene); TP53, Tumor Protein 53

MOLECULAR CHARACTERISATION: 'LABILE' BC CHARACTERISTICS

'STABLE' BC CHARACTERISTICS

'LABILE' BC CHARACTERISTICS

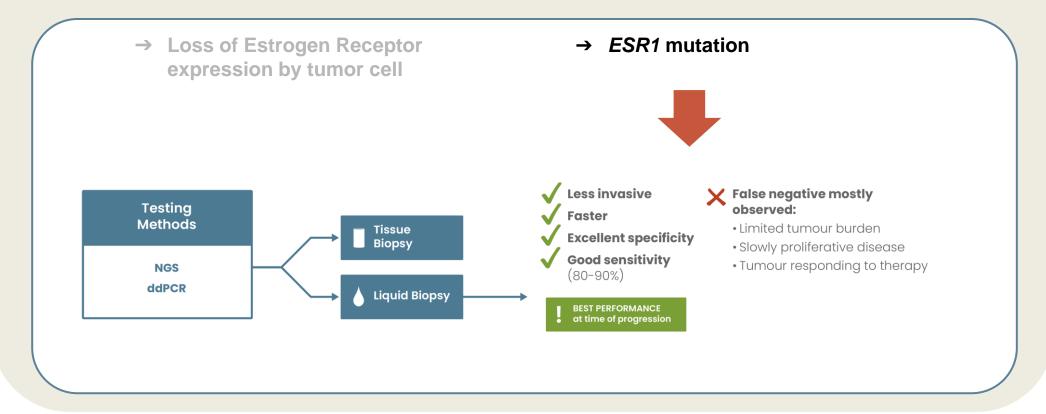


MOLECULAR CHARACTERISATION: 'LABILE' BC CHARACTERISTICS

'STABLE' BC CHARACTERISTICS

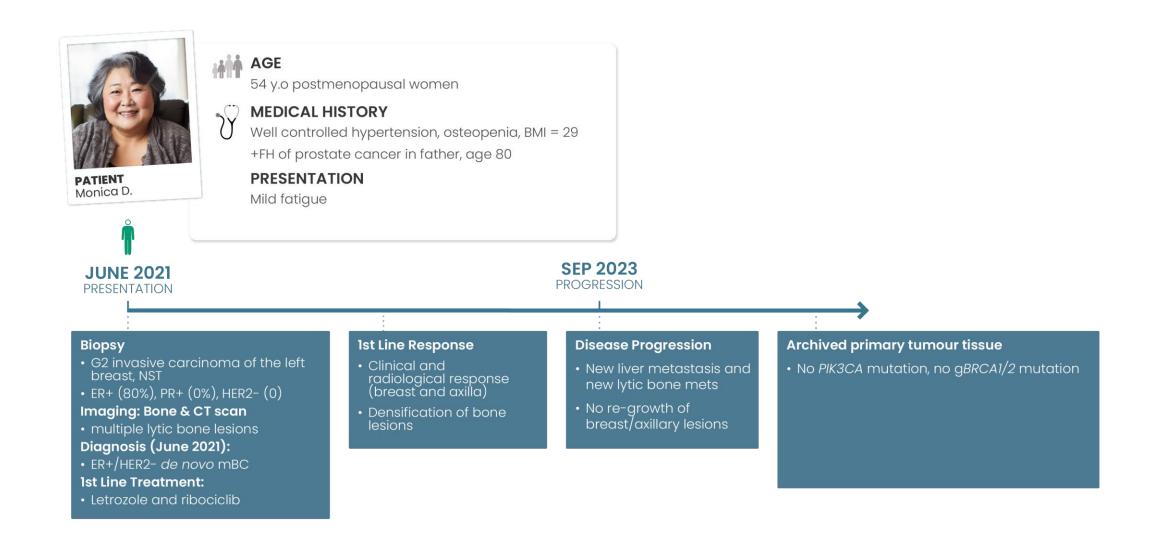
'LABILE' BC CHARACTERISTICS

Phenotypic characteristics + genotypic changes associated with resistance to AI and CDK4/6i



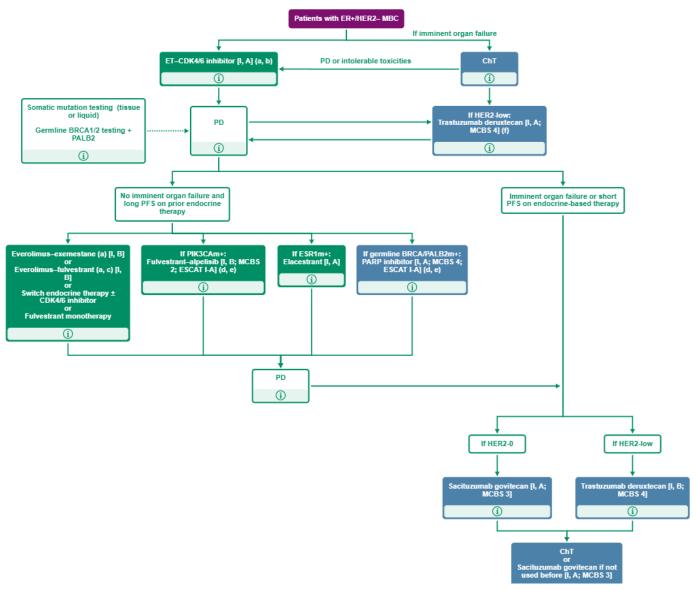
MOLECULAR CHARACTERISATION

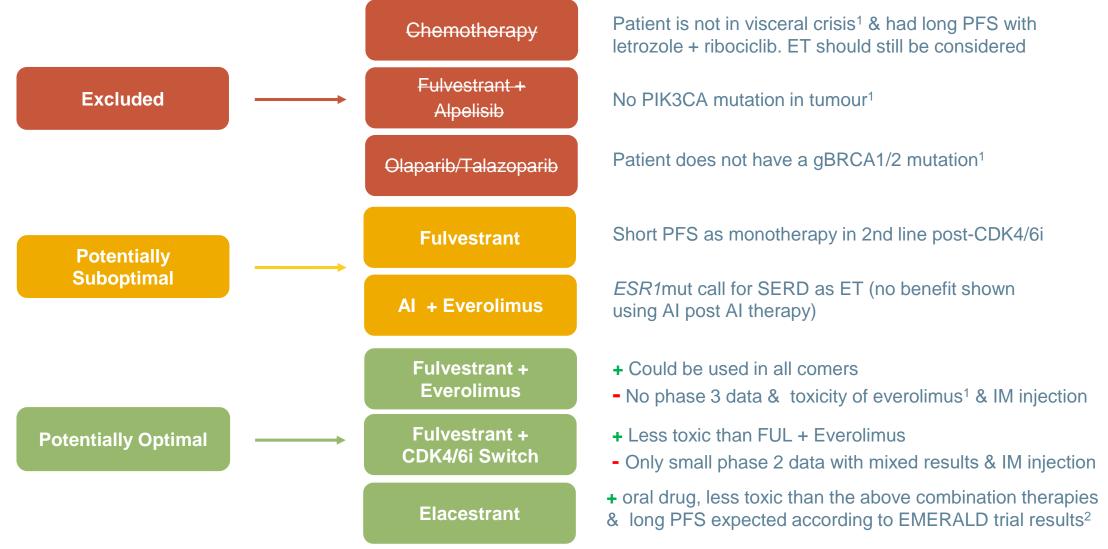
'STABLE' BC CHARACTERISTICS


'LABILE' BC CHARACTERISTICS

• Phenotypic characteristics + genotypic changes associated with resistance to AI and CDK4/6i

UPDATED CLINICAL SCENARIO


PATIENT CASE: ER+/HER2- METASTATIC BREAST CANCER


ER+, Estrogen Receptor Positive; ESR1, Estrogen Receptor 1; gBRCA1/2, Germline mutations in Breast Cancer Susceptibility Genes 1 and 2; HER2-, Human Epidermal Growth Factor Receptor 2 Negative; PIK3CA, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (gene)

TREATMENT OPTIONS: PATIENT CASE SPECIFIC

ESMO TREATMENT GUIDELINES FOR ER+/HER2- MBC

AVAILABLE CURRENT TREATMENT OPTIONS: CASE SPECIFIC

AI, Aromatase Inhibitor; CDK4/6i, Cyclin-Dependent Kinase 4/6 Inhibitor; ESR1, Estrogen Receptor 1; ET, Endocrine Therapy; FUL, Fulvestrant; gBRCA1/2, Germline mutations in Breast Cancer Susceptibility Genes 1 and 2; IM, intramuscular; PFS, Progression-Free Survival; PIK3CA, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (gene); SERD, Selective Estrogen Receptor Degrader

^{1.} https://www.annalsofoncology.org/article/S0923-7534(21)04498-7/fulltext (Accessed August 08, 2023); 2. Bidard, J Clin Oncol. 2022; PMID: 35584336

ELACESTRANT & THE EMERALD TRIAL

JANUARY 2023: ELACESTRANT (ORSERDU) APPROVAL

FDA approves elacestrant for ER-positive, HER2negative, ESR1-mutated advanced or metastatic breast cancer

On January 27, 2023, the Food and Drug Administration (FDA) approved elacestrant (Orserdu, Stemline Therapeutics, Inc.) for postmenopausal women or adult men with ERpositive, HER2-negative, ESR1-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy.

FDA also approved the Guardant360 CDx assay as a companion diagnostic device to identify patients with breast cancer for treatment with elacestrant.

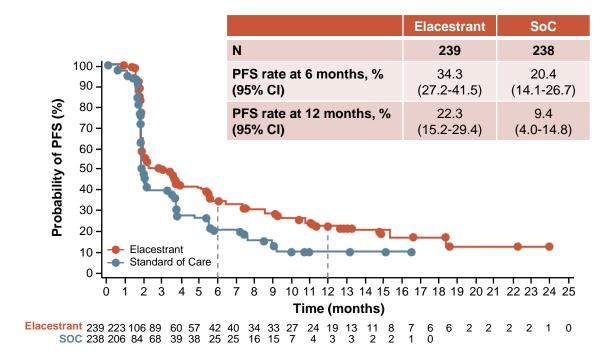
PHASE 3 EMERALD: STUDY DESIGN

 A multicentre, international, randomised, open-label, active-controlled phase 3 trial for postmenopausal patients with ER+/HER2- MBC

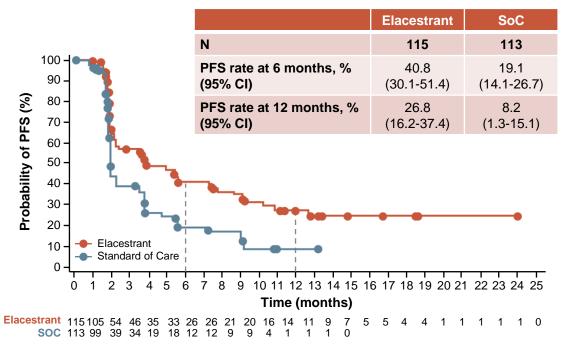
Key inclusion criteria

Advanced/metastatic ER+/HER2- breast cancer; progressed or relapsed on or after one or two lines of ET, one of which was given in combination with a CDK4/6 inhibitor, for advanced or MBC; ECOG PS 0 or 1

Elacestrant (400 mg oral QD)


Investigator's choice of fulvestrant, anastrozole, letrozole, exemestane

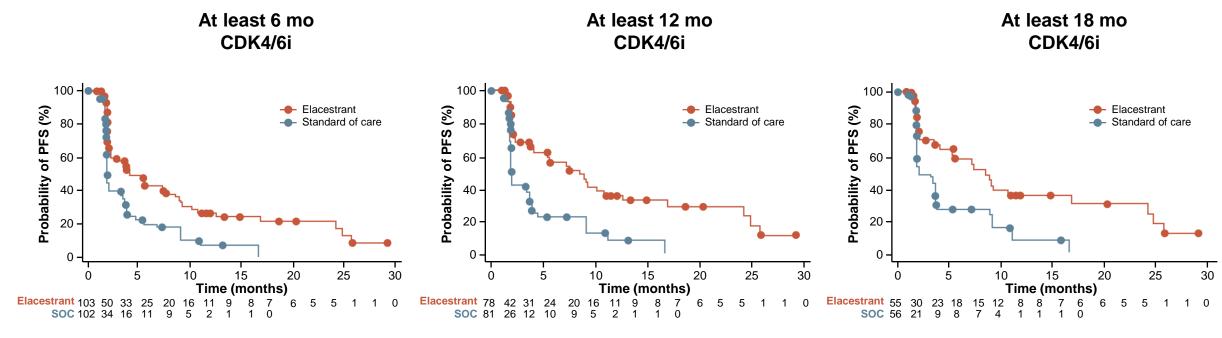
- Primary end point: assess PFS in all patients and those with mESR1
- Secondary end point: assess OS in all patients and those with mESR1
- Study design considerations:
 - planned sample size: 466 patients (randomised 1:1)
 - planned number of countries/study sites: ~17/215
 - planned study duration: ~30–33 months
 - stratification factors: mESR1 status (detected by ctDNA), prior fulvestrant and presence of visceral disease


CBR, clinical benefit rate; CDK4/6, cyclin-dependent kinase 4/6; ctDNA, circulating tumour DNA; DoR, duration of response; ECOG PS; Eastern Cooperative Oncology Group performance status; ER, estrogen receptor; ET, endocrine therapy; HER2, hormone epidermal growth factor receptor 2; MBC, metastatic breast cancer; mESR1, estrogen receptor 1 mutation; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; PRO patient reported outcome; QD, Use "every day"

EMERALD: PFS RATE AT 6 & 12 MONTHS ALL PATIENTS AND mESR1 GROUP

All patients

Patients with tumours harbouring mESR1



Elacestrant demonstrated a higher PFS rate versus SoC ET at 6 and 12 months in patients with ER+/HER2- advanced/metastatic breast cancer following prior CDK4/6i therapy

CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CI, confidence interval; ER, estrogen receptor; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; mESR1, estrogen receptor 1 mutation; N, sample size; PFS, progression-free survival; SoC, standard of care

20

EMERALD: PFS BY DURATION OF CDK4/6i (mESR1)

	Elacestrant	SoC Endocrine Therapy		
Median PFS, months (95% CI)	4.14 (2.20-7.79)	1.87 (1.87-3.29)		
PFS rate at 12 months, % (95% CI)	26.02 (15.12-36.92)	6.45 (0.00-13.65)		
Hazard ratio (95% CI)		0.517 (0.361-0.738)		

	Elacestrant	SoC Endocrine Therapy	
Median PFS, months (95% CI)	8.61 (4.14-10.84)	1.91 (1.87-3.68)	
PFS rate at 12 months, % (95% CI)	35.81 (21.84-49.78)	8.39 (0.00-17.66)	
Hazard ratio (95% CI)	0.410 (0.262-0.634)		

	Elacestrant	SoC Endocrine Therapy	
Median PFS, months (95% CI)	8.61 (5.45-16.89)	2.10 (1.87-3.75)	
PFS rate at 12 months, % (95% CI)	35.79 (19.54-52.05)	7.73 (0.00-20.20)	
Hazard ratio (95% CI)	0.466 (0.270-0.791)		

CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CI, confidence interval; mESR1, estrogen receptor 1 mutation; mo, months; PFS, progression-free survival; SoC; standard of care

Bidard, J Clin Oncol. 2022; PMID: 35584336

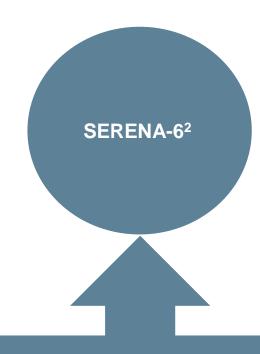
ELACESTRANT VS SOC: ADVERSE EVENTS

		SoC			
Event	Elacestrant (N=237)	Total (N=229)	Fulvestrant (N=161)	AI (N=68)	
Any AE	218 (92.0)	197 (86.0)	144 (89.4)	53 (77.9)	
Grade 3 and 4 ^a	64 (27.0)	47 (20.5)	33 (20.5)	14 (20.6)	
Grade 5 ^b	4 (1.7)	6 (2.6)	5 (3.1)	1 (1.5)	
Leading to dose reduction	7 (3.0)	0	0	Not applicable	
Leading to study drug discontinuation	15 (6.3)	10 (4.4)	6 (3.7)	4 (5.9)	

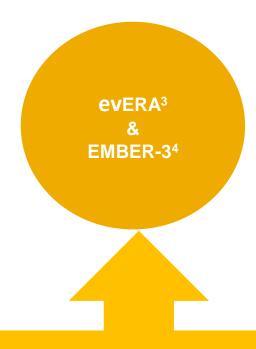
AEs ^c occurring in ≥10% of patients in any arm	Elacestrant		Total		Fulvestrant		Al	
	All grades	Grade 3 or 4	All grades	Grade 3 or 4	All grades	Grade 3 or 4	All grades	Grade 3 or 4
Nausea	83 (35.0) ^d	6 (2.5)	43 (18.8)	2 (0.9)	26 (16.1)	0	17 (25.0)	2 (2.9)
Fatigue	45 (19.0)	2 (0.8)	43 (18.8)	2 (0.9)	35 (21.7)	1 (0.6)	8 (11.8)	1 (1.5)
Vomiting	45 (19.0)e	2 (0.8)	19 (8.3)	0	12 (7.5)	0	7 (10.3)	0
Decreased appetite	35 (14.8)	2 (0.8)	21 (9.2)	1 (0.4)	12 (7.5)	0	9 (13.2)	1 (1.5)
Arthralgia	34 (14.3)	2 (0.8)	37 (16.2)	0	28 (17.4)	0	9 (13.2)	0
Diarrhoea	33 (13.9)	0	23 (10.0)	2 (0.9)	14 (8.7)	1 (0.6)	9 (13.2)	1 (1.5)
Back pain	33 (13.9)	6 (2.5)	22 (9.6)	1 (0.4)	16 (9.9)	1 (0.6)	6 (8.8)	0
AST increased	31 (13.1)	4 (1.7)	28 (12.2)	2 (0.9)	20 (12.4)	2 (1.2)	8 (11.8)	0
Headache	29 (12.2)	4 (1.7)	26 (11.4)	0	18 (11.2)	0	8 (11.8)	0
Constipation	29 (12.2)	0	15 (6.6)	0	10 (6.2)	0	5 (7.4)	0
Hot flush	27 (11.4)	0	19 (8.3)	0	15 (9.3)	0	4 (5.9)	0
Dyspepsia	24 (10.1)	0	6 (2.6)	0	4 (2.5)	0	2 (2.9)	0
ALT increased	22 (9.3)	5 (2.1)	23 (10.0)	1 (0.4)	17 (10.6)	0	6 (8.8)	1 (1.5)

^a AE severity was graded according to the National Cancer Institute's Common Terminology Criteria for Adverse Events version 5.0. ^b No fatal events were attributed to study drug by the investigator.

AE, adverse event; AI, aromatase inhibitor; ALT, alanine transaminase; AST, aspartate transferase; n, sample size; SoC, standard of care Bidard, J Clin Oncol. 2022; PMID: 35584336


^c Preferred terms were coded using the Medical Dictionary for Regulatory Activities version 23.0. dGrade 1 nausea, n=59 (24.9%); grade 2 nausea, n=18 (7.6%); grade 3 nausea, n=6 (2.5%); and no patients experienced grade 4 nausea. Percentages reflect maximum grade experienced grade 4 vomiting, n=2 (0.8%); grade 3 vomiting, n=2 (0.8%); and no patients experienced grade 4 vomiting. Percentages reflect maximum grade experienced

FUTURE PERSPECTIVE & CONCLUSION


FUTURE DIRECTION IN 2ND LINE POST CDK4/6I

- **Objective:** Investigated Capivesertib as a novel AKT inhibitor
- Results: CAPI+ FUL Significantly improved PFS compared to FUL alone. Target Population is TBD

- Objective Assess AZD9833+ CDK4/6i in HR+/HER2-MBC with detectable ESR1m Before Progression
- Primary Outcome: PFS

- Objective: Exploring combining oral SERD therapies with everolimus or abemaciclib
- **Primary Outcome:** PFS in ESR1m subpopulation & ITT

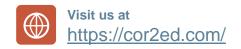
- Objective: Investigating ADCs as a front-line chemotherapy choice
- Primary Outcomes: PFS

ADCs: Antibody-Drug Conjugates; AKT: Protein Kinase B; CAPI: Capivasertib; CDK4/6i: Cyclin-Dependent Kinase 4/6 Inhibitors; ESR1m: Estrogen Receptor 1 Mutations; FUL: Fulvestrant; HR+: Hormone Receptor Positive; ITT: Intent-to-Treat; MBC: Metastatic Breast Cancer; PFS: Progression-Free Survival.

- 1. Turner N.C, N Engl J Med 2023; 388:2058-2070; 2. https://clinicaltrials.gov/study/NCT04964934?tab=table (Accessed 08 August, 2023);
- 3. https://classic.clinicaltrials.gov/ct2/show/NCT05306340 (Accessed 08 August 2023); 4. https://classic.clinicaltrials.gov/ct2/show/NCT044975308 (Accessed 08 August 2023); 6. https://classic.clinicaltrials.gov/ct2/show/NCT04494425 (Accessed 08 August 2023); 7. https://classic.clinicaltrials.gov/ct2/show/NCT04494425 (Accessed 08 August 2023); 8. https://classic.clinicaltrials.gov/ct2/show/NCT04494425 (Accessed 08 August 2023); 9. <a href="http

CLINICAL TAKEAWAYS

- To optimize treatment selection, molecular characterization should be conducted for each patient, taking into account 'stable' characteristics and 'labile' traits which are often associated with resistance to endocrine therapy
- ESR1 mutation testing should be done with a liquid biopsy platform at the time of progression on an aromatase inhibitor as well as after subsequent lines of progression
- Elacestrant is the 1st oral SERD to be FDA approved (January 2023), with optimal efficacy and manageable safety for patients with *ESR1* mutated ER+/HER2- advanced or metastatic breast cancer
- Oral SERDs are being studied as a monotherapy and in combination with targeted therapies (i.e. CDK4/6, mTOR and AKT inhibitors), offering promising prospects for their integration into clinical practice


For more information visit

