# COR2ED THE HEART OF MEDICAL EDUCATION

TOOLS FOR OPTIMISING TREATMENT & MANAGEMENT OF ADVANCED NETS

### **MICRO LEARNING**

### Emily Bergsland, MD

Professor of Medicine University of California-San Francisco (UCSF), USA

### Louis de Mestier, MD, PhD

Assistant Professor Paris-Cité University and Beaujon Hospital (APHP), France

**JULY 2024** 

### **DEVELOPED BY NET CONNECT**

This programme is developed by NET CONNECT, an international group of experts in the field of neuroendocrine tumours.

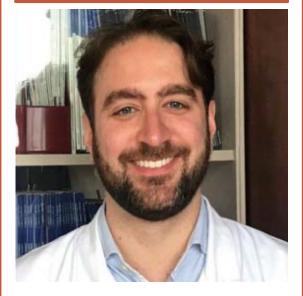


#### Acknowledgement and disclosures

This NET CONNECT programme is supported through an independent educational grant from Ipsen. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

Please note: The views expressed within this programme are the personal opinions of the experts. They do not necessarily represent the views of the experts' institutions, or the rest of the NET CONNECT group.

Expert disclosures:


- Emily Bergsland, MD has received financial support/sponsorship for research support, consultation, or speaker fees from the following companies: Boehringer Ingelheim, Merck, and RayzeBio (support to institution for clinical trials)
- Louis de Mestier, MD, PhD has received financial support/sponsorship for research support, consultation, or speaker fees from the following companies: Advanced Accelerator Applications/Novartis, Esteve, Ipsen, Mayoly, and Servier

# THIS PROGRAMME HAS BEEN DEVELOPED BY THE FOLLOWING EXPERTS

#### Emily Bergsland, MD University of California-San Francisco (UCSF), USA

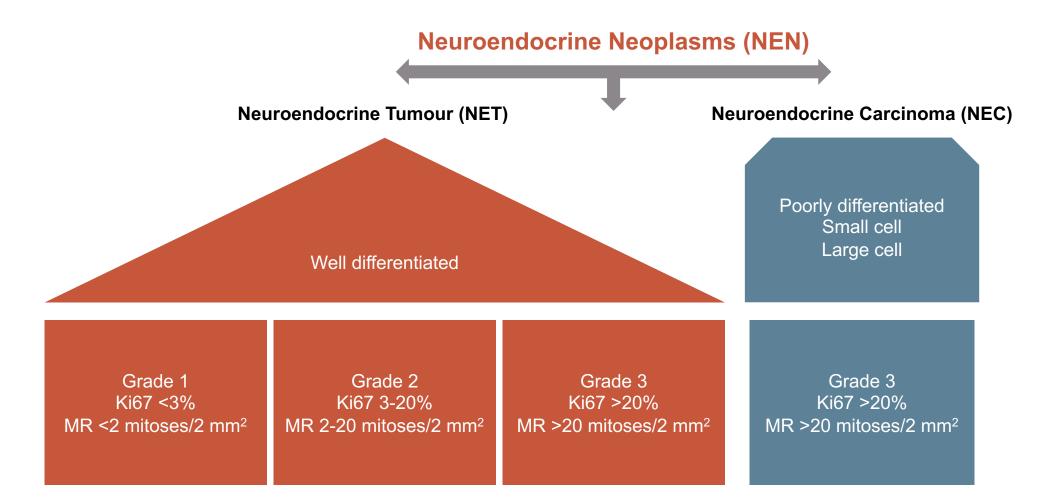


Louis de Mestier, MD, PhD Paris-Cité University & Beaujon Hospital, France



#### **EDUCATIONAL OBJECTIVES**

- Understand how to optimally manage advanced NETs
- Raise awareness of the criteria essential for assessing therapeutic success
- Highlight the tools available for clinicians to evaluate tumour evolution over time


#### **CLINICAL TAKEAWAYS**

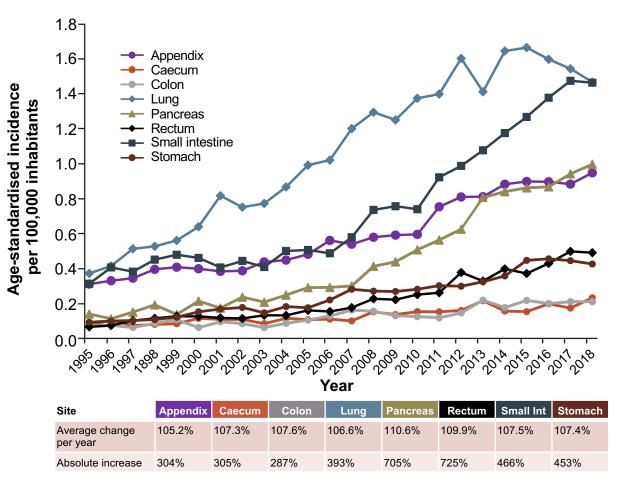
- Outcomes depend on tumour location, size, distribution, and hepatic extent of metastases as well as tumour growth rate
- Involvement of the patient, as well as a multidisciplinary team, in decision-making is essential
- Always take quality of life (QoL) and long-term toxicity into account when choosing therapy

# INTRODUCTION

**Brief overview** 

### **CLASSIFICATION OF NENs (WHO 2022)**

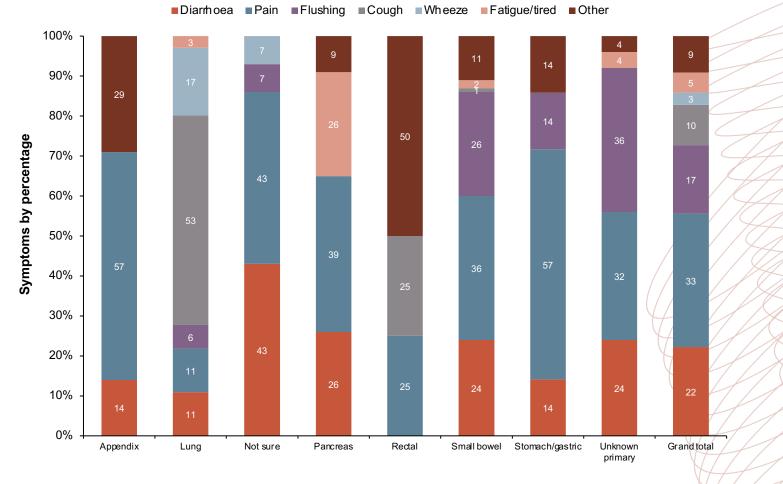



Mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) were recognised for the first time in the 5th edition of the *WHO Classification of Endocrine and Neuroendocrine Tumors* to define mixed neoplasms arising in all systems of the body; descriptive and conceptual category rather than a specific diagnosis Ki67, antigen Kiel 67; MR, mitotic rate; WHO, World Health Organization Rindi G, et al. Endocr Pathol. 2022;33:115-54; image adapted from Chauhan A, et al. CA Cancer J Clin. 2024 Apr 29, Epub ahead of print

#### **EPIDEMIOLOGY: RARE TUMOURS**

- Increasing incidence in recent years
  - Eight-fold increase in NETs over the past five decades<sup>1</sup>
  - Due (at least in part) to improvements in diagnosis and awareness<sup>1</sup>
  - Age-adjusted incidence increased 3.7-fold between 1995 and 2018, from 2.35 to 8.61 per 100,000<sup>2</sup>
- In the SEER 18 registry (2000-2012), gastroenteropancreatic neuroendocrine tumours (GEP-NETs) were the most common well differentiated NETs (3.56 per 100,000)<sup>1</sup>

#### NEN incidence rise over time


Age-standardised incidence by primary site of NEN in England 1995-2018<sup>2</sup>



NEN, neuroendocrine neoplasm; NET, neuroendocrine tumour; SEER, Surveillance, Epidemiology, and End Results programme 1. Dasari A, et al. JAMA Oncol. 2017;3:1335-42; 2. White BE, et al. Lancet Reg Health Eur. 2022;23:100510

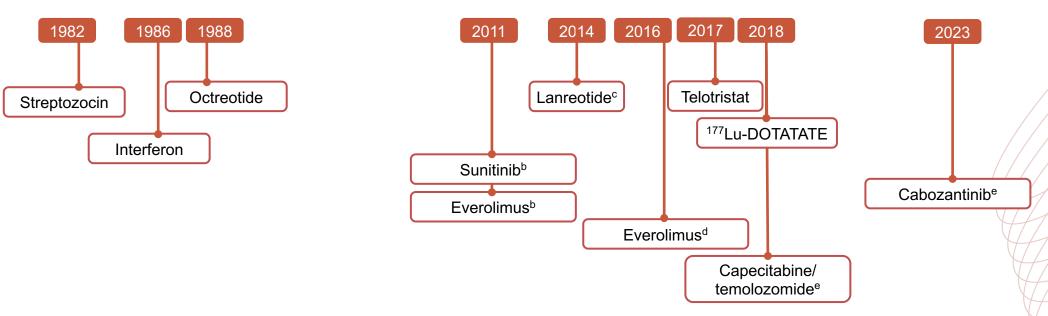
#### **SIGNS AND SYMPTOMS**

- When NETs cause clinical symptoms from secreted hormones, they are termed "functioning" tumours
- Most NETs do not produce a biologically active hormone and are termed "non-functioning"
- Some NETs cause non-specific symptoms (e.g. abdominal pain, fatigue)
- Most NETs do not cause symptoms and are thus diagnosed incidentally



#### Main symptoms associated with NETs by site of primary tumour <sup>2</sup>

### SIGNS AND SYMPTOMS: SOME NETS ARE FUNCTIONAL


#### **Functional NET syndromes**

| Tumour location           | Hormone                               | Symptoms and signs                                                                                               | Syndrome                                     |
|---------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Foregut                   | 5-HTP, histamine                      | Pruritus, cutaneous wheals, bronchospasm                                                                         | Carcinoid syndrome                           |
| Small intestine, lung     | Serotonin, tachykinin, prostaglandins | Flushing, diarrhoea, valvular disease, bronchospasm                                                              | Carcinoid syndrome                           |
| Pancreatic $\beta$ cells  | Insulin, proinsulin                   | Hypoglycaemic symptoms                                                                                           | Insulinoma,<br>Whipple triad                 |
| Gastrinoma triangle       | Gastrin                               | Diarrhoea, peptic ulcer disease                                                                                  | Gastrinoma,<br>Zollinger–Ellison             |
| Pancreatic a cells        | Glucagon                              | Diabetes, deep vein thrombosis, depression, dermatitis (necrolytic migratory erythema)                           | Glucagonoma,<br>4D syndrome                  |
| Pancreatic $\delta$ cells | Somatostatin                          | Diabetes, cholelithiasis, steatorrhea, weight loss, achlorhydria                                                 | Somatostatinoma                              |
| Non-β islet cells         | Vasoactive intestinal peptide         | Watery diarrhoea (profuse), hypokalaemia,<br>achlorhydria                                                        | VIPoma<br>Verner–Morrison (WDHA<br>syndrome) |
| Lung                      | ACTH                                  | Fat redistribution/obesity, facial plethora, skin atrophy/easy bruising/striae, proximal myopathy hyperglycaemia | Cushing syndrome                             |

4D syndrome, glucagonoma syndrome; 5-HTP, 5-hydroxytryptophan; ACTH(oma), adrenocorticotropic hormone(-producing pancreatic neuroendocrine neoplasm); NET, neuroendocrine tumour; VIPoma, vasoactive intestinal peptide-secreting tumour; WDHA, watery diarrhoea, hypokalaemia, achlorhydria Raphael MJ, et al. CMAJ. 2017;189:E398-E404

### SURVIVAL HAS IMPROVED AS THE NET TREATMENT LANDSCAPE HAS EVOLVED

 Patients<sup>a</sup> diagnosed between 2009-2012 had better OS compared with those diagnosed between 2000-2004, with a 21.3% lower risk of death (HR=0.79; 95% CI, 0.73-0.85)<sup>c</sup>



#### **Key milestones in NET therapeutics**

<sup>a</sup> In the United States; <sup>b</sup> For (p)NETs; <sup>c</sup> For GEP-NETs; d gastrointestinal and thoracic NETs; <sup>e</sup> Not yet EMA/FDA-approved or used routinely in clinical practice but has been shown in a phase III study to improve progression-free survival for patients living with NETs

177Lu, lutetium-177; CI, confidence interval; EMA, European Medicines Agency; GEP, gastroenteropancreatic neuroendocrine, HR, hazard ratio; (p)NET, (pancreatic) neuroendocrine tumour

1. Dasari A, et al. JAMA Oncol. 2017;3:1335-42; 2. Adapted from: Chauhan A, et al. Cancers (Basel). 2022;14:5248

### NOTES TO ASSIST THERAPEUTIC DECISION-MAKING

- Lanreotide is FDA- and EMA-approved for Grade 1 and Grade 2 (Ki67 ≥10%) GEP-NETs of midgut, pancreatic
  or unknown origin, in adult patients with unresectable locally advanced or metastatic disease<sup>1</sup>
- Octreotide is EMA-approved for progressive unresectable or metastatic, well-differentiated (Grade 1 or Grade 2) non-functional NETs of gastrointestinal or lung origin in adults (FDA-approved only for hormone control)<sup>2</sup>
- <sup>177</sup>Lu-DOTATATE is FDA- and EMA-approved for adults with unresectable or metastatic, progressive, welldifferentiated (Grade 1 and Grade 2), somatostatin receptor positive-GEP-NETs<sup>1</sup>
  - Efficacy of PRRT may be limited in the setting of bulky liver disease<sup>3</sup>
- Everolimus is FDA- and EMA-approved for progressive unresectable or metastatic, well-differentiated (Grade 1 or Grade 2) non-functional NETs of gastrointestinal or lung origin<sup>1</sup>
- Sunitinib is FDA- and EMA-approved for adults with unresectable or metastatic, well differentiated pancreatic neuroendocrine tumours with disease progression<sup>1</sup>
- Chemotherapy is predominantly used to treat pancreatic NETs
  - Streptozocin-based therapy can be used, but nephrotoxicity can be limiting, and it is not routinely available in the USA
  - Alternative alkylating agent-based chemotherapy combinations (capecitabine-temozolomide, dacarbazine-5-FU) are now routinely administered with similar efficacy and better tolerance

<sup>177</sup>Lu, lutetium-177; 5-FU, 5-fluorouracil; EMA, European Medical Agency; FDA, Food and Drug Administration; GEP-NET, gastroenteropancreatic neuroendocrine tumour; Ki67, antigen Kiel 67; NET, neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy
1. https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-for-solid-tumours/esmo-mcbs-scorecards/ (accessed April 2024); 2. Zhang, JY, Kunz PL. JCO Oncol Pract. 2022;18:258-64; 3. Strosberg J, et al. N Engl J Med. 2017;376:125-35

# **THERAPEUTIC DECISION-MAKING**

### SEVERAL ORGANIZATIONS HAVE PUBLISHED GUIDELINES REGARDING THERAPY FOR NETS



- Four *Clinical Practice Guidelines* on neuroendocrine tumours that include information on incidence, diagnosis, staging and risk assessment, treatment, response evaluation, and follow-up<sup>1</sup>
  - Adrenocortical carcinomas and malignant pheochromocytomas
  - Gastroenteropancreatic neuroendocrine neoplasms
  - Lung and thymic carcinoids
  - Thyroid cancer



 NCCN Guidelines for Neuroendocrine and Adrenal Gland Tumors focus on diagnosis, treatment, and management of NETs, adrenal tumours, pheochromocytomas, paragangliomas, and multiple endocrine neoplasia<sup>2</sup>

ESMO, European Society for Medical Oncology; NET, neuroendocrine tumour

1. https://www.esmo.org/guidelines/guidelines-by-topic/endocrine-and-neuroendocrine-cancers (accessed April 2024); 2. Shah MH, et al. J Natl Compr Canc Netw. 2021;19:839-68

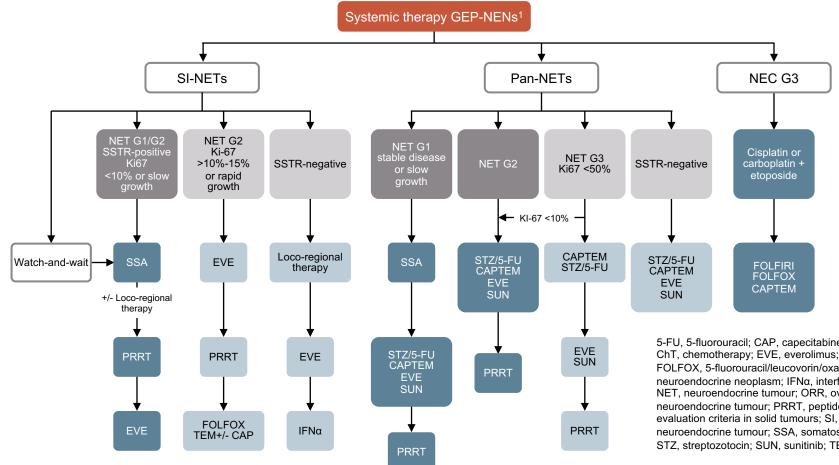
#### SEVERAL ORGANIZATIONS HAVE PUBLISHED GUIDELINES REGARDING THERAPY FOR NETS



Seven new ENETS guidance papers on the management of NETs published in 2022-2023<sup>1</sup>



• Thirteen guidelines and white paper summaries published by NANETS since 2010<sup>2</sup>


ORIGINAL ARTICLE-LIVER, PANCREAS, AND BILIARY TRACT

JNETS clinical practice guidelines for gastroenteropancreatic neuroendocrine neoplasms: diagnosis, treatment, and follow-up: a synopsis

 Revised Clinical Practice Guidelines for Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs) from the JNETS comprise chapters on diagnosis, pathology, surgical treatment, medical and multidisciplinary treatment, and MEN1/VHL disease<sup>3</sup>

JNETS, Japanese Neuroendocrine Tumor Society; MEN1, multiple endocrine neoplasia type 1; NET, neuroendocrine tumour; VHL, von Hippel-Lindau syndrome 1. https://www.enets.org/guidelines.html (accessed April 2024); 2. https://nanets.net/net-guidelines-library (accessed April 2024); 3. Ito T, et al. J Gastroenterol. 2021;56:1033-44

### SAMPLE GUIDELINE FOR TREATMENT OF GEP-NENs: ESMO GUIDELINES (2020)

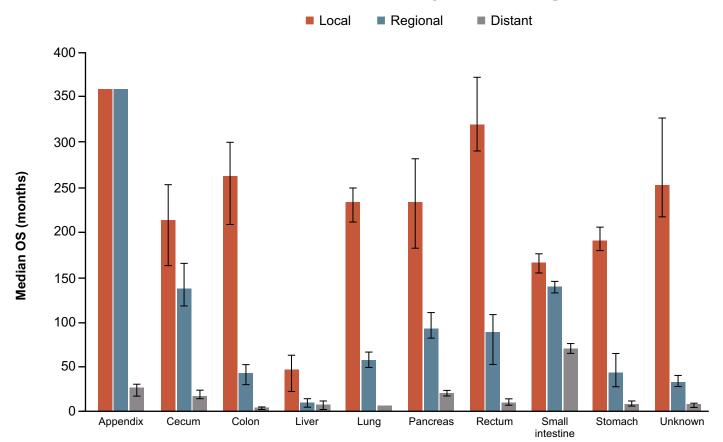


5-FU, 5-fluorouracil; CAP, capecitabine; CAPTEM, capecitabine and temozolomide; ChT, chemotherapy; EVE, everolimus; FOLFIRI, 5-fluorouracil/leucovorin/irinotecan; FOLFOX, 5-fluorouracil/leucovorin/oxaliplatin; GEP-NEN, gastroenteropancreatic neuroendocrine neoplasm; IFNα, interferon alpha; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumour; ORR, overall response rate; Pan-NET, pancreatic neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy; RECIST, response evaluation criteria in solid tumours; SI, small intestinal; SI-NET, small intestinal neuroendocrine tumour; SSA, somatostatin analogue; SSTR, somatostatin receptor; STZ, streptozotocin; SUN, sunitinib; TEM, temozolomide.

**Evidence for treatment sequencing is limited**<sup>2</sup>

#### NET heterogeneity means that such algorithms are useful for general guidance, but treatments should be considered on a case-by-case basis

ESMO, European Society for Medical Oncology


1. Pavel et al. Ann Oncol. 2020;31:844-60; 2. Riechelmann RP, et al. Am Soc Clin Oncol Educ Book. 2023;43:e389278

# FACTORS TO CONSIDER IN THE CONTEXT OF THERAPEUTIC DECISION-MAKING

## **TUMOUR-RELATED FACTORS**

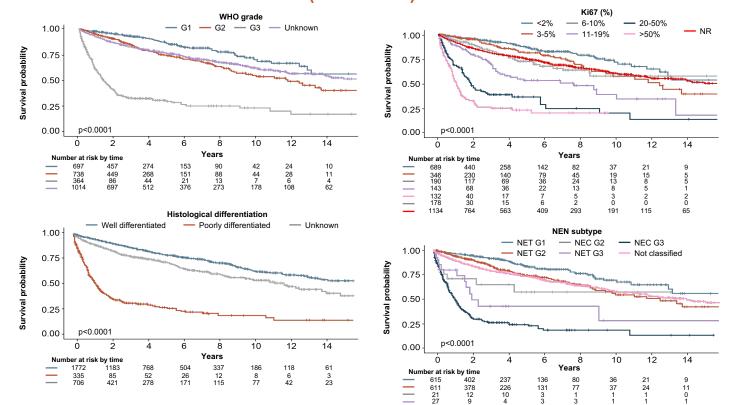
### **TUMOUR-RELATED FACTORS: PRIMARY SITE AND STAGE**

# OVERALL SURVIVAL VARIES ACCORDING TO PRIMARY TUMOUR LOCATION AND STAGE



CI, confidence interval; GEP-NET, gastroenteropancreatic neuroendocrine tumour; HR, hazard ratio; NET, neuroendocrine tumour; OS, overall survival Dasari A, et al. JAMA Oncol. 2017;3:1335-42

20


Median OS of NETs by site and stage

# TUMOUR-RELATED FACTORS: GRADE, DIFFERENTIATION, PROLIFERATION INDEX

#### HISTOLOGICAL DIFFERENTIATION AND KI67 PROLIFERATION INDEX HAVE PROGNOSTIC VALUE IN GEP-NENS

- Five-year survival has been shown to be significantly greater for NET-G2 versus poorly differentiated carcinomas (75.5% vs 58.2%) and NET-G3 versus NEC-G3 (43.7% vs 25.4%)<sup>1</sup>
- An increase in Ki67 index and highgrade progression may be important correlates of prognosis<sup>2</sup>

Overall survival by tumour differentiation and proliferation (GEP-NENs)<sup>1</sup>



54

29

14

Ki67, antigen Kiel 67; (GEP-)NEN, gastroenteropancreatic neuroendocrine neoplasm; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumour; NR, not reported; WHO World Health Organisation

1. Nuñez-Valdovinos B, et al. Oncologist. 2018; 23:422-432; 2. Botling J, et al. Neuroendocrinology. 2020;110:891-98

### TUMOUR-RELATED FACTORS: EXTENT AND LOCATION OF METASTASES AND TUMOUR GROWTH RATE

- Haematogenous spread to the liver parenchyma from a primary GEP-NET via the portal vein is common<sup>1-3</sup>
  - Liver-only disease in ~50% of patients<sup>4</sup>
  - Compared to other sites, patients with NET liver metastases have worse overall survival (HR=1.85; 95% CI, 1.46-2.36)<sup>5,a</sup>
- Size, distribution, and extent of liver metastases impact prognosis and therapeutic approach<sup>1,4</sup>
  - Palliative resection can be considered in selected patients
  - Liver-directed therapy reserved for those with adequate liver function, no portal vein thrombosis, and <70% liver involvement
    - Bland embolization, chemoembolization, and selective internal radiation therapy
- Location and extent of metastases matter in NETs
  - Consider liver-directed therapy for liver-dominant disease
  - Systemic pattern (e.g., bone, lung, lymph node, peritoneum) of disease warrants systemic therapy
  - Evaluate burden of disease: Low vs bulky disease
- Rate of growth
  - Assess tumour kinetics: Fast growing over weeks to months vs slow growing over years
  - Tumour Growth Rate (TGR) may be predictive for tumour progression and prognostic for survival in patients with NETs who are undergoing \$\$A treatment<sup>6</sup>

<sup>a</sup> Multivariable analysis with HRs calculated for 5-year mortality hazard rates, reference is lung (other sites: appendix, caecum, colon, pancreas, rectum, small intestine, stomach)
CI, confidence interval; GEP-NET, gastroenteropancreatic neuroendocrine tumour; HR, hazard ratio; NET, neuroendocrine tumour
1. Lewis MA and Hobday TJ. Int J Hepatol. 2012;2012:973946; 2. Mayo SC, et al. Ann Surg Oncol. 2010;17:3129-36; 3. John BJ and Davidson BR. Expert Rev Gastroenterol Hepatol. 2012;6:357-69; 4. Cazzato RL, et al. Cancers (Basel). 2021;13:6368; 5. Dasari A, et al. JAMA Oncol. 2017;3:1335-42; 6. Lamarca A, et al. Oncologist. 2019;24:e1082-e90

### TUMOUR-RELATED FACTORS: PET IMAGING CHARACTERISTICS

- DOTA PET imaging for well differentiated NETs
  - Assesses somatostatin receptor (SSTR) expression and extent of disease
  - SSTR types 1 and 2 are highly expressed in >90% of GEP-NETs<sup>1,2</sup>
  - Imaging using SSTR PET (DOTA-) radiotracers is the gold standard in well-differentiated NETs
  - 68Ga/64Cu-DOTATATE and 68Ga-DOTATOC are approved SSTR PET tracers<sup>3</sup>
  - Routinely used to select patients for peptide receptor radionuclide therapy (PRRT)<sup>4</sup>
- [18F]FDG PET imaging for well differentiated NETs
  - Assesses glucose uptake, usually correlated to biological aggressiveness and Ki67 index
  - Can be useful as baseline scan:
    - In G3 NET to assess concordance with DOTA-PET uptake
    - In people living with NETs with low or no uptake on DOTA-PET or those with very unfavourable tumour biology
    - For G3 NET with very high Ki67 index (e.g. >55%), particularly if curative surgery is considered (and in some cases for response assessment)
  - In summary, FDG-PET should be performed in NETs if awareness of more biologically aggressive disease could influence the therapeutic decision<sup>5</sup>

[18F]FDG, fludeoxyglucose, fluorine-18; 64Cu, copper-64; 68Ga, gallium-68; G3, grade 3; GEP-NET, gastroenteropancreatic neuroendocrine tumour; Ki67, antigen Kiel 67; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumour; PET, positron emission tomography; PRRT, peptide receptor radionuclide therapy; SSTR, somatostatin receptor

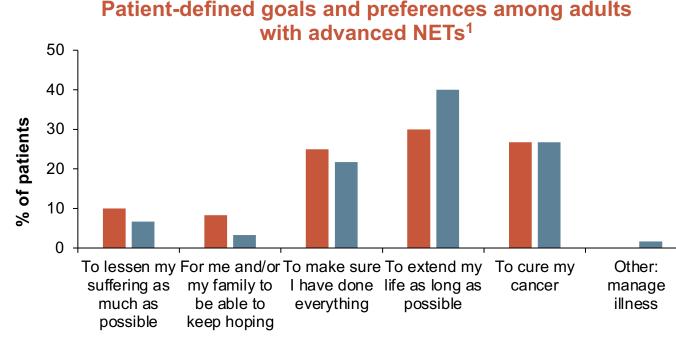
1. Reubi JC, et al. Eur J Nucl Med. 2001;28:836-46; 2. Zaknun JJ, et al. Eur J Nucl Med Mol Imaging. 2013;40:800-16; 3. Ambrosini V, et al. J Neuroendocrinol. 2024;36:e13359; 4. Hope TA, et al. J Nucl Med. 2023;64:204-10; 5. Rinzivillo M, et al. Oncologist. 2018;23:186-92

### **EXAMPLES OF OTHER POTENTIAL BIOMARKERS**

- MGMT protein expression or *MGMT* promoter gene methylation (emerging biomarker)
  - ~50% of pNETs are MGMT-deficient<sup>1</sup>
  - MGMT enzyme deficiency may be associated with response in patients treated with alkylating agents (especially those living with pNETs)<sup>1,2</sup>
- Neuroendocrine neoplasms test (NETest)<sup>4-8</sup>
  - Multianalyte liquid biopsy that measures NET gene expression in blood
  - Under study as a biomarker of response to therapy and recurrent/residual disease following surgery/
- PRRT Predictive Quotient (PPQ)<sup>9,10</sup>
  - PPQ integrates NET transcript expression in blood with tumour grade
  - Emerging data suggest baseline PPQ stratifies PRRT "responders" from "non-responders"

MAPK, mitogen-activated protein kinase; MGMT, methylguanine methyltransferase; NEN, neuroendocrine neoplasm; OS, overall survival; PFS, progression-free survival; (p)NET, (pancreatic) neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy; SSA, somatostatin analogue
1. de Mestier L, et al. Endocr Relat Cancer. 2020;27:R391-405; 2. Kunz PL, et al. J Clin Oncol. 2023;41:1359-69; 3. Modlin IM, et al. Ann Surg Oncol. 2010;17:2427-4; 4. Bevere M, et al. Diagnostics (Basel). 2023;13:2820; 4. Modlin IM, et al. Endocrinol Metab Clin North Am. 2018;47:485-504; 5. Puliani G, et al. Neuroendocrinology. 2022;112:523-36; 6. Partelli S, et al. Ann Surg Oncol. 2020;27:3928-36; 7. Malczewska A, et al. Endocr Connect. 2019;8:442-53; 8. Malczewska A, et al. Endocr Connect. 2021;10:110-12; 9. Bodei L, et al. Eur J Nucl Med Mol Imaging. 2018;45:1155-69; 10. Bodei L. et al. J Nucl Med. 2023;64:567-73

# **PATIENT-RELATED FACTORS**


### **PATIENT-RELATED FACTORS: HISTORY**

- Predisposition: Some NETs arise in setting of hereditary cancer syndrome, for example:
  - GEP-NETs occur in 70-80% of patients with multiple endocrine neoplasia type 1 (MEN1) syndrome1
  - pNETs occur in 10-17% of patients with von Hippel-Lindau (VHL) disease<sup>2</sup>
  - The presence of a hereditary cancer syndrome can impact surgical decision-making
- Comorbidities
  - Liver or renal function impairment can impact choice of therapy<sup>3</sup>
    - e.g. careful with PRRT or capecitabine in the setting of renal dysfunction
  - Carcinoid heart disease is present in approximately 30-40% of patients with carcinoid syndrome<sup>4</sup>
  - Use caution when using with everolimus in the setting of poorly controlled diabetes
  - Avoid sunitinib in the setting of poorly controlled hypertension, angina, or stroke

GEP-NET, gastroenteropancreatic neuroendocrine tumour; (p)NET, (pancreatic) neuroendocrine tumour; TKI, tyrosine kinase inhibitor 1. Mele C, et al. Front Endocrinol (Lausanne). 2020;11:591501; 2. Laks S, et al. Cancer;2022:128:435-46; 3. Duan H, et al. Oncologist. 2022;27:447-52; 4. Davar J, et al. J Am Coll Cardiol. 2017;69:1288-304

### PATIENT-RELATED FACTORS: PATIENT PREFERENCES

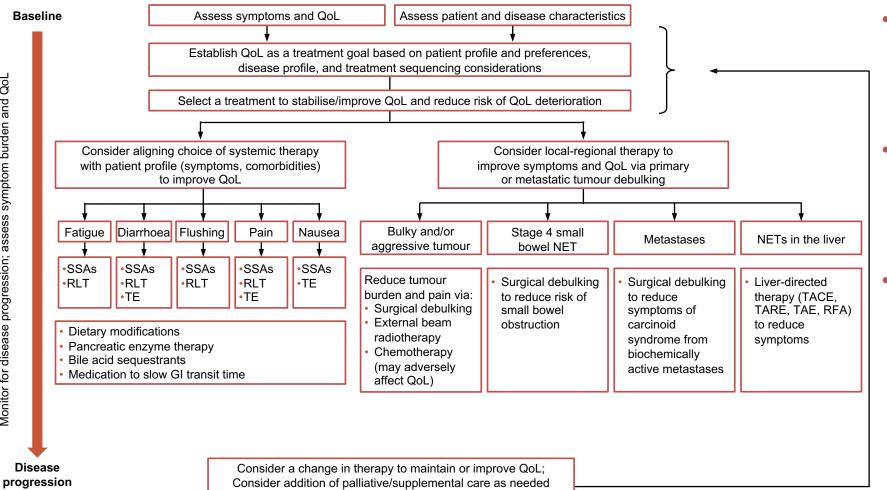
# Need for improved patient–provider communication and integration of patient preferences in treatment planning and medical decision-making



Patient's primary goal
Oncologist's primary goal

Percentages may not add up to 100% due to rounding.

Only 52% of patients have the same treatment goals as their physician<sup>1</sup>


<sup>a</sup> Stage IV is not thought to be curable, even if resectable NET, neuroendocrine tumour
Li D, et al. J Natl Compr Canc Netw. 2022;20:1330-37.e3

Primary therapeutic objectives

- Surgery with curative intent<sup>a</sup>
- Tumour stability versus shrinkage
- Survival
- Symptom control
- Urgency
- Patient preferences
- Quality of life

### **PATIENT-RELATED FACTORS: QUALITY OF LIFE (QOL)**

#### Using QoL considerations in treatment decisions<sup>1</sup>



- Adults living with NETs strongly value independence over survival<sup>2</sup>
- Maintaining current ability to do daily activities is the most important outcome for 47% of patients<sup>2</sup>
- Only 12% of patients consider eliminating symptoms to be the most important outcome<sup>2</sup>

NET, neuroendocrine tumour; QoL, quality of life; RFA, radiofrequency ablation; RLT, radioligand therapy; SSA, somatostatin analogue; TACE, transarterial chemoembolization; TAE, transarterial embolization; TARE, transarterial radioembolization; TE, telotristat ethyl

1. Naraev BG, et al. Expert Rev Anticancer Ther. 2023;23:601-15; 2. Li D, et al. J Natl Compr Canc Netw 2022;20:1330-37.e3

-28

### PATIENT-RELATED FACTORS: QUALITY OF LIFE (QOL) EVIDENCE GAPS

Additional work needed to address evidence gaps in GEP-NET treatment and patient QoL

Few direct QoL comparisons between treatment modalities for GEP-NETs; lack of data guiding the optimal sequence of treatments

Few trials provide information on the effects of treatment on patient QoL

Longitudinal data regarding treatment effects on QoL are sparse

PRO assessments of QoL are not used in routine clinical practice

QoL assessment tools are NET-specific

Lack of data supporting the role of hormonal control in maintenance of QoL in patients with GEP-NETs

Role of interventions beyond medical treatments in supporting the physical, emotional, social, and financial well-being of patients with NETs

GEP-NET, gastroenteropancreatic neuroendocrine tumour; NET, neuroendocrine tumour; PRO, patient-reported outcome; QoL, quality of life Naraev BG, et al. Expert Rev Anticancer Ther. 2023;23:601-15

## **TREATMENT-RELATED FACTORS**

### THERAPEUTIC OPTIONS: LIVER-DIRECTED THERAPY

- Limited metastatic disease (liver-directed interventions)
  - Liver metastases resection/destruction/debulking, percutaneous thermal ablation<sup>1</sup>
  - Trans-arterial chemoembolization (TACE)/embolization (TAE)<sup>1</sup>
  - Selective internal radiation therapy (SIRT)<sup>2</sup>
  - Liver transplantation

Clinical indications and contraindications of the main liver-directed therapy procedures for neuroendocrine metastasis treatment, including interventional radiology and nuclear medicine options<sup>3</sup>

| Treatment                                                                                                    | Main indications                                                                                                                                                                                 | Contraindications                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advantages                                                                                                                                                                        | Disadvantages                                                                                                                                                                                                                                         | 2    |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>Percutaneous ablation</li> </ul>                                                                    | <ul> <li>Oligo-metastatic disease (less than 3-5 metastases)</li> <li>Oligo-progressive disease (1-2 metastases not responding to systemic treatments)</li> </ul>                                | <ul> <li>Irreversible coagulative disorders</li> <li>Contraindications to sedation or general anaesthesia</li> <li>Bilio-enteric anastomosis/history of sphincterotomy</li> <li>Dilatation of intra-hepatic biliary tree due to biliary strictures</li> <li>Cardiac arrythmia in case of electroporation</li> </ul>                                                                                                                                                             | <ul> <li>Minimally invasive</li> <li>Relative fast post-operative recovering phase</li> <li>Can be repeated</li> </ul>                                                            | <ul> <li>Useful for a limited burden of disease only</li> </ul>                                                                                                                                                                                       | 1111 |
| <ul> <li>Transarterial embolization<br/>(TAE)</li> <li>Transarterial<br/>chemoembolization (TACE)</li> </ul> | <ul> <li>Unresectable hepatic metastatic disease or not suitable for thermal ablation</li> <li>Disease progression or persistent symptoms despite cold somatostatin analogues therapy</li> </ul> | <ul> <li>Portal vein thrombosis</li> <li>Bilio-enteric anastomosis/history of sphincterotomy</li> <li>Liver involvement &gt;75%</li> <li>Impaired hepatic function (bilirubin level 3 mg/dL, ascites)</li> <li>Allergy to contrast media</li> <li>Irreversible coagulative disorders</li> </ul>                                                                                                                                                                                 | <ul> <li>Treat a large and diffuse disease</li> <li>Can be repeated</li> <li>TACE provides a combined ischemic and chemotherapy effect on large and/or diffuse disease</li> </ul> | <ul> <li>Frequent post-embolisation syndrome</li> <li>TAE provides an ischemic effect only</li> <li>Needs 6-12 h of in-bed stay after<br/>treatment due to the arterial femoral<br/>access</li> </ul>                                                 |      |
| <ul> <li>Selective Internal Radiation<br/>Therapy (SIRT) or<br/>radioembolization</li> </ul>                 |                                                                                                                                                                                                  | <ul> <li>Pre-existing liver disease, including patients who have previously received chemotherapies</li> <li>Impaired hepatic function (bilirubin level ≥3 mg/dL, ascites)</li> <li>Greater than 20% lung shunting of the hepatic artery blood flow determined during the work-up</li> <li>Pre-assessment angiogram that demonstrates abnormal vascular anatomy that would result in significant reflux of hepatic arterial blood to the stomach, pancreas, or bowel</li> </ul> | <ul> <li>Better tolerance profile compared with<br/>TAE and TACE</li> </ul>                                                                                                       | <ul> <li>Needs two separate vascular procedures<br/>(work-up and treatment)</li> <li>Needs 6-12 h of in-bed stay after<br/>treatment due to the arterial each femoral<br/>access</li> <li>Needs well-organised institutional<br/>protocols</li> </ul> |      |

h, hours; NET, neuroendocrine tumour

1. Liu DM, et al. Am J Clin Oncol. 2009;32:200-15; 2. Rajekar H, et al. Int J Hepatol. 2011;2011:404916; 3. Cazzato RL, et al. Cancers (Basel). 2021;13:6368

### **SUPPORTING CLINICAL STUDIES**

#### **EVIDENCE-BASE FOR CONSENSUS ON APPROPRIATE INTERVENTIONS**

#### SSAs are typically first-line therapy for controlling growth of well-differentiated NETs without poor prognostic factors

| Study                               | Regimen                   | Patients                                                                                     | Key outcome<br>measure | Key result                                                         |       |
|-------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|-------|
| PROMID (NCT00171873) <sup>1</sup>   | Octreotide LAR vs placebo | Metastatic midgut NETs (n=85)                                                                | Median TTP             | 14.3 vs 6.0 months<br>HR=0.34; 95% CI,<br>0.20-0.59; p=0.000072    | 1 1 1 |
| CLARINET (NCT00353496) <sup>2</sup> | Lanreotide vs placebo     | Locally advanced or metastatic non-<br>functioning pancreatic and intestinal<br>NETs (n=204) | Median PFS             | Not reached vs 18 months<br>HR=0.47; 95% CI,<br>0.30-0.73; p<0.001 | 1 1   |

#### Upon progression with first-line SSAs, high-dose lanreotide may prolong PFS and delay the use of subsequent therapies

| Study                                        | Regimen                                         | Patients                   | Key outcome<br>measure | Key results                                                                                                                      |
|----------------------------------------------|-------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CLARINET FORTE<br>(NCT02651987) <sup>3</sup> | Lanreotide (single-arm) 120 mg every 14<br>days | Progressive disease (n=99) | Median PFS             | 5.6 months in pNETs<br>95% <i>CI, 5.5–8.3</i><br>8.3 months in midgut NETs<br>95% <i>CI, 5.6-11,1</i><br>PFS longer if Ki67 <10% |

CI, confidence interval; HR, hazard ratio; Ki67, antigen Kiel 67; LAR, long-acting release; (p)NET, (pancreatic) neuroendocrine tumour; PFS, progression-free survival; SSA, somatostatin analogue; TTP, time to progression

1. Rinke A, et al. J Clin Oncol. 2009;27:4656-63; 2. Caplin ME, et al. N Engl J Med. 2014;371:224-33; 3. Pavel M, et al. Eur J Cancer. 2021;157:403-14

### **SUPPORTING CLINICAL STUDIES**

#### **EVIDENCE-BASE FOR CONSENSUS ON APPROPRIATE INTERVENTIONS**

#### For patients with SSTR-positive GEP-NETs, PRRT using <sup>177</sup>Lu-DOTATATE offers disease control and survival benefit

| Study                                 | Regimen                                                                                                                                     | Patients                     | Key outcome<br>measure(s) | Key result(s)                                                                                                                                                         |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NETTER-1 (NCT01578239) <sup>1,2</sup> | <sup>177</sup> Lu-DOTATATE plus best supportive care<br>(including octreotide LAR 30 mg/month) vs<br>high-dose octreotide LAR (60 mg/month) | Advanced midgut NETs (n=229) | Median PFS<br>Median OS   | Not reached vs 8.4<br>months<br><i>HR</i> =0.21; 95% <i>CI</i> ,<br>0.13-0.33; p<0.001<br>48.0 vs 36.3 months<br><i>HR</i> =0.84; 95% <i>CI</i> ,<br>0.60-1.17; p=0.3 |  |

#### • CAP-TEM is recommended in advanced pNETs for which cytotoxic agents are indicated<sup>3</sup>

| Study                              | Regimen                 | Patients                                                          | Key outcome measure | Key result                                                    |
|------------------------------------|-------------------------|-------------------------------------------------------------------|---------------------|---------------------------------------------------------------|
| Phase 2 (NCT01824875) <sup>3</sup> | CAP-TEM vs temozolomide | Progressive, unresectable low or intermediate grade pNETs (n=144) | Median PFS          | 22.7 vs 14.4 months<br>HR=0.58; 95% CI,<br>0.36-0.93; p=0.022 |

#### <sup>a</sup>G2/3, Ki-67 10-55%

<sup>177</sup>Lu, lutetium-177; CAPTEM, capecitabine plus temozolomide; CI, confidence interval; G, grade; GEP-NET, gastroenteropancreatic neuroendocrine tumour; HR, hazard ratio; Ki67, antigen Kiel 67; LAR, long-acting release; OS, overall survival; PFS, progression-free survival; p(NET), (pancreatic) neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy; SSA, somatostatin analogue; SSTR, somatostatin receptor

1. Strosberg J, et al. N Engl J Med. 2017;376:125-35; 2. Strosberg JR, et al. Lancet Oncol. 20231;22:1752-63; 3. Kunz PL, et al. J Clin Oncol. 2023;41:1359-69

### **SUPPORTING CLINICAL STUDIES**

#### **EVIDENCE-BASE FOR CONSENSUS ON APPROPRIATE INTERVENTIONS**

 Everolimus offers PFS improvements for people living with pNETs and non-functional NETs of gastrointestinal, lung, or unknown primary origin

| Study                                | Regimen               | Patients                                              | Key outcome<br>measure | Key result                                                     |
|--------------------------------------|-----------------------|-------------------------------------------------------|------------------------|----------------------------------------------------------------|
| RADIANT-3 (NCT00510068) <sup>1</sup> | Everolimus vs placebo | Advanced, progressive pNETs (n=410)                   | Median PFS             | 11.0 vs 4.6 months<br>HR=0.35; 95% Cl,<br>0.27-0.45; p<0.001   |
| RADIANT-4 (NCT01524783) <sup>2</sup> | Everolimus vs placebo | Progressive, nonfunctional lung<br>or GI NETs (n=302) | Median PFS             | 11.0 vs 3.9 months<br>HR=0.48; 95% Cl,<br>0.35-0.67; p<0.00001 |

• Sunitinib is used to treat unresectable metastatic progressive pNETs

| Study                              | Regimen              | Patients                                        | Key outcome<br>measure | Key result                                                   |
|------------------------------------|----------------------|-------------------------------------------------|------------------------|--------------------------------------------------------------|
| Phase 3 (NCT00428597) <sup>3</sup> | Sunitinib vs placebo | Advanced, well-<br>differentiated pNETs (n=171) | Median PFS             | 11.4 vs 5.5 months<br>HR=0.42; 95% CI,<br>0.26-0.66; p<0.001 |

Cl, confidence interval; G, grade; Gl, gastrointestinal; HR, hazard ratio; PFS, progression-free survival; (p)NET, (pancreatic) neuroendocrine tumour 1. Yao JC, et al. N Engl J Med. 2011;364:514-23; 2. Yao JC, et al. Lancet. 2016;387:968-77; 3. Raymond E, et al. N Engl J Med. 2011;364:501-13

### TREATMENT-SPECIFIC ISSUES: COMMON ADVERSE REACTIONS

- SSAs
  - Octreotide LAR depot (≥20% of patients): Back pain, fatigue, headache, abdominal pain, nausea, dizziness<sup>1</sup>
  - Lanreotide depot (>10% of patients): Abdominal pain, musculoskeletal pain, vomiting, headache, injection site reaction, hyperglycaemia, hypertension, cholelithiasis<sup>2</sup>
- <sup>177</sup>Lu-DOTATATE
  - Thrombocytopenia, lymphopenia, anaemia, pancytopenia, decreased appetite, nausea, vomiting, fatigue (≥10% of patients)<sup>3</sup>
- Everolimus
  - Stomatitis, infections, rash, fatigue, diarrhoea, oedema, abdominal pain, nausea, fever, asthenia, cough, headache, decreased appetite (≥30% of patients)<sup>4</sup>
- Sunitinib
  - Fatigue/asthenia, diarrhoea, mucositis/stomatitis, nausea, decreased appetite/anorexia, vomiting, abdominal pain, hand-foot syndrome, hypertension, bleeding events, dysgeusia/altered taste, dyspepsia, thrombocytopenia (≥25% of patients)<sup>5</sup>
- Expected cumulative toxicity
  - Impact of concomitant medication and/or NET-specific treatment(s)
  - Real-world studies with long follow-up are needed to evaluate the risk of cumulative toxicities of different treatments and treatment sequences,<sup>6</sup> e.g. myelotoxicity (including therapy-related myeloid neoplasms) due to cumulative effects of PRRT and chemotherapies

<sup>177</sup>Lu, lutetium-177; LAR, long-acting release; NET, neuroendocrine tumour; PPRT, peptide receptor radionuclide therapy; SSA, somatostatin analogue

Package Inserts/Summary of Product Characteristics available at:

- 1. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2019/021008s043lbl.pdf; 2. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2014/022074s011lbl.pdf;
- 3. https://www.ema.europa.eu/en/documents/product-information/lutathera-epar-product-information\_en.pdf;
- 4. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2012/022334s016lbl.pdf; 5. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2017/021938s033lbl.pdf (accessed May 2024); 6. Perrier M, et al. Ther Adv Med Oncol. 2023;15:17588359231171041

### **CLINICAL STUDIES OF ADDITIONAL INTEREST**

 Emerging prospective data suggest that <sup>177</sup>Lu-based PRRT has activity in advanced pancreatic NETs, and as up-front therapy in G2/3 GEP-NETs

| Study                                                   | Regimen                                                                                                                     | Patients                                                               | Key outcome<br>measure(s) | Key result(s)                                                                                                                      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| NETTER-2<br>(NCT03972488) <sup>1</sup>                  | <sup>177</sup> Lu-DOTATATE plus octreotide<br>LAR 30 mg/month vs high-dose<br>octreotide LAR (60 mg/month) (first-<br>line) | SSTR-positive,<br>high-proliferation <sup>a</sup> GEP-<br>NETs (n=226) | ORR<br>Median PFS         | 43.0% vs 9.3%<br>OR=7.81; 95% Cl,<br>3.32-18.4;<br>p<0.0001<br>22.8 vs 8.5 months<br>HR=0.276; 95% Cl,<br>0.182-0.418;<br>p<0.0001 |
| OCLURANDOM<br>(EudraCT 2013-004032-<br>30) <sup>2</sup> | <sup>177</sup> Lu-Octreotate vs sunitinib                                                                                   | Progressive advanced pNETs (n=84)                                      | Median PFS                | 20.7 (90% Cl, 17.2-<br>23.7) vs 11 (90%<br>Cl, 8.8-12.4)<br>months                                                                 |

<sup>a</sup>G2/3, Ki-67 10-55%

<sup>177</sup>Lu, lutetium-177; CI, confidence interval; G, grade; GEP-NET, gastroenteropancreatic neuroendocrine tumour; HR, hazard ratio; Ki67, antigen Kiel 67; LAR, long-acting release; OS, overall survival; 177Lu, lutetium-177PF; S, progression-free survival; p(NET), (pancreatic) neuroendocrine tumour; PRRT, peptide receptor radionuclide therapy; SSA, somatostatin analogue; SSTR, somatostatin receptor

1. Singh S, et al. J Clin Oncol. 2024;42 (no. 3\_Suppl):LBA588; 2. Baudin E, et al. Ann Oncol. 2022;33 (supplement 7):S954 (abstract 887O)

### **CLINICAL STUDIES OF ADDITIONAL INTEREST**

#### Sequencing: streptozotocin and everolimus in pNETs

| Study                             | Regimen                                                                              | Patients                                 | Key outcome<br>measure(s) | Key result(s)                                                                                       |
|-----------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|
| SEQTOR (NCT02246127) <sup>1</sup> | Everolimus followed by streptozotocin<br>upon progression vs the reverse<br>sequence | Advanced G1/2 pNETs,<br>ECOG 0-2 (n=141) | Median PFS<br>ORR         | 21.5 (95% Cl, 16.9-<br>31.3) vs 23.8 months<br>(95% Cl, 13.6-30.8)<br>p=0.351<br>11% vs 30% p=0.014 |

#### • Cabozantinib for people living with previously treated, progressive NET

| Study                              | Regimen                 | Patients                                                                                              | Key outcome<br>measure | Key result                                                                                                                                                                                             |
|------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CABINET (NCT03375320) <sup>2</sup> | Cabozantinib vs placebo | Locally advanced or metastatic<br>well or moderately differentiated<br>epNETs (n=197) or pNETs (n=93) | Median PFS             | 8.2 vs 3.2 months in<br>epNETs <i>HR</i> =0.41;<br>95% <i>CI</i> ,<br>0.27-0.62; <i>p</i> <0.0001<br>13.7 vs 3.0 months in<br>pNETs <i>HR</i> =0.25; 95%<br><i>CI</i> , 0.12-0.49;<br><i>p</i> <0.0001 |

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; epNET, extrapancreatic neuroendocrine tumour; G, grade; HR, hazard ratio; ORR, overall response rate; PF\$, progression-free survival; (p)NET, (pancreatic) neuroendocrine tumour 1. Salazar R, et al. Ann Oncol. 2022;33 (suppl 7):S808-69; 2. Chan J, et al. Ann Oncol. 2023;34 (supplement 2):S1292

### **CLINICAL STUDIES OF ADDITIONAL INTEREST**

#### • Surufatinib in advanced epNETs and pNETs

| Study                               | Regimen                | Patients                                                                       | Key outcome<br>measure | Key result                                                    |
|-------------------------------------|------------------------|--------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|
| SANET-ep (NCT02588170) <sup>1</sup> | Surufatinib vs placebo | Unresectable or metastatic, well<br>differentiated epNETs, ECOG 0-1<br>(n=198) | Median PFS             | 9.2 vs 3.8 months<br>HR=0.33; 95% CI,<br>0.22-0.50; p<0.0001  |
| SANET-p (NCT02589821) <sup>2</sup>  | Surufatinib vs placebo | Progressive, advanced, well<br>differentiated pNETs, ECOG 0-1<br>(n=172)       | Median PFS             | 10.9 vs 3.7 months<br>HR=0.49; 95% CI,<br>0.32-0.76; p=0.0011 |

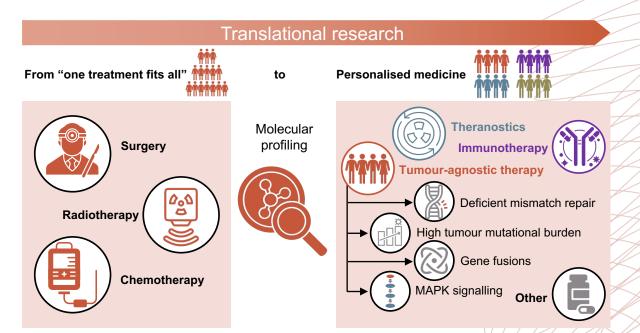
#### • Levatinib in previously treated advanced GEP-NETs

| Study                             | Regimen                | Patients                                                                   | Key outcome<br>measure | Key result                                                          |
|-----------------------------------|------------------------|----------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|
| TALENT (NCT02678780) <sup>3</sup> | Levatinib (open-label) | Advanced G1/2 pNETs or GI-<br>NETs, progression after<br>treatment (n=111) | ORR                    | 29.9% (95% CI, 21.6-<br>39.6)<br>44.2% in pNETs<br>16.4% in GI-NETs |

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; epNET, extrapancreatic neuroendocrine tumour; G, grade; GEP-NET, gastroenteropancreatic neuroendocrine/tumour; G, gastrointestinal; HR, hazard ratio; ORR, overall response rate; PFS, progression-free survival; (p)NET, (pancreatic) neuroendocrine tumour 1. Xu J, et al. Lancet Oncol. 2020;21:1500-12; 2. Xu J, et al. Lancet Oncol. 2020;21:1489-99; 3. Capdevila J, et al. J Clin Oncol. 2021;39:2304-12

# SUMMARY

### FACTORS INFLUENCING CHOICE OF GEP-NET THERAPY


#### INVOLVEMENT OF A MULTIDISCIPLINARY TEAM IS KEY

| Tumour                                                        | Patient                                                        | Provider/treatment      |
|---------------------------------------------------------------|----------------------------------------------------------------|-------------------------|
| Liver tumour burden<br>(% involvement, size, #, distribution) | Co-morbidities<br>(e.g. bilirubin, Cr, hypertension, diabetes) | Provider preference     |
| Extent of extrahepatic disease                                | Prior therapy (including Whipple)                              | Provider experience     |
| Rate of growth/Ki67                                           | Logistics (co-pays, travel)                                    | Availability of therapy |
| Portal vein patency                                           | Symptoms (hormones, bulk)                                      | Strength of data        |
| Primary tumour site<br>(e.g. pancreas vs SB vs other)         | Goals of therapy<br>(stability vs shrinkage) & urgency         |                         |
| SSTR expression                                               | Concurrent medications                                         |                         |
| +/- molecular features                                        |                                                                |                         |
| Overall burden of disease (low volume vs bulky)               |                                                                | 1                       |

CR, creatinine; GEP-NET, gastroenteropancreatic neuroendocrine tumour; Ki67, antigen Kiel 67; SB, small bowel; SSTR, somatostatin receptor Courtesy of Dr E. Bergsland

### **CHALLENGES AND UNMET NEEDS**

- Improved patient—provider communication and integration of patient preferences in treatment planning and medical decision-making
- Guidelines vary in terms of level of detail, often recommending several options for a given line of therapy
- Reliable, cost-effective biomarkers for diagnostic accuracy, therapeutic guidance, and early relapse detection
- Reliable tools to assess extent of disease and treatment outcomes
- Individualization of treatment accounting for both tumour- and patient-related factors
- Definitive studies addressing therapeutic sequencing
- Additional tools to support therapeutic decisionmaking and drug development in NETs, such as those based on tumour growth rate (TGR) kinetics



#### **SUMMARY**

- Therapeutic choice is based on a number of tumour-, patient-, and treatment-related factors, in the absence of validated predictive biomarkers (efficacy) or clinical trials addressing sequence of therapy
- Involvement of a multidisciplinary team is essential
- In addition, communication between patients and HCPs is needed to ensure that patient preferences are incorporated into decision-making and treatment plans
- Ultimately, choice of treatment strategy needs to integrate efficacy, QoL, and both short- and long-term toxicity



NET

**Connect on** 

Visit us at

Th

connect

POWERED BY COR2ED

https://cor2ed.com/



Heading to the heart of Independent Medical Education since 2012